Blog: April 2019 Archives

Defending Democracies Against Information Attacks

To better understand influence attacks, we proposed an approach that models democracy itself as an information system and explains how democracies are vulnerable to certain forms of information attacks that autocracies naturally resist. Our model combines ideas from both international security and computer security, avoiding the limitations of both in explaining how influence attacks may damage democracy as a whole.

Our initial account is necessarily limited. Building a truly comprehensive understanding of democracy as an information system will be a Herculean labor, involving the collective endeavors of political scientists and theorists, computer scientists, scholars of complexity, and others.

In this short paper, we undertake a more modest task: providing policy advice to improve the resilience of democracy against these attacks. Specifically, we can show how policy makers not only need to think about how to strengthen systems against attacks, but also need to consider how these efforts intersect with public beliefs­—or common political knowledge­—about these systems, since public beliefs may themselves be an important vector for attacks.

In democracies, many important political decisions are taken by ordinary citizens (typically, in electoral democracies, by voting for political representatives). This means that citizens need to have some shared understandings about their political system, and that the society needs some means of generating shared information regarding who their citizens are and what they want. We call this common political knowledge, and it is largely generated through mechanisms of social aggregation (and the institutions that implement them), such as voting, censuses, and the like. These are imperfect mechanisms, but essential to the proper functioning of democracy. They are often compromised or non-existent in autocratic regimes, since they are potentially threatening to the rulers.

In modern democracies, the most important such mechanism is voting, which aggregates citizens’ choices over competing parties and politicians to determine who is to control executive power for a limited period. Another important mechanism is the census process, which play an important role in the US and in other democracies, in providing broad information about the population, in shaping the electoral system (through the allocation of seats in the House of Representatives), and in policy making (through the allocation of government spending and resources). Of lesser import are public commenting processes, through which individuals and interest groups can comment on significant public policy and regulatory decisions.

All of these systems are vulnerable to attack. Elections are vulnerable to a variety of illegal manipulations, including vote rigging. However, many kinds of manipulation are currently legal in the US, including many forms of gerrymandering, gimmicking voting time, allocating polling booths and resources so as to advantage or disadvantage particular populations, imposing onerous registration and identity requirements, and so on.

Censuses may be manipulated through the provision of bogus information or, more plausibly, through the skewing of policy or resources so that some populations are undercounted. Many of the political battles over the census over the past few decades have been waged over whether the census should undertake statistical measures to counter undersampling bias for populations who are statistically less likely to return census forms, such as minorities and undocumented immigrants. Current efforts to include a question about immigration status may make it less likely that undocumented or recent immigrants will return completed forms.

Finally, public commenting systems too are vulnerable to attacks intended to misrepresent the support for or opposition to specific proposals, including the formation of astroturf (artificial grassroots) groups and the misuse of fake or stolen identities in large-scale mail, fax, email or online commenting systems.

All these attacks are relatively well understood, even if policy choices might be improved by a better understanding of their relationship to shared political knowledge. For example, some voting ID requirements are rationalized through appeals to security concerns about voter fraud. While political scientists have suggested that these concerns are largely unwarranted, we currently lack a framework for evaluating the trade-offs, if any. Computer security concepts such as confidentiality, integrity, and availability could be combined with findings from political science and political theory to provide such a framework.

Even so, the relationship between social aggregation institutions and public beliefs is far less well understood by policy makers. Even when social aggregation mechanisms and institutions are robust against direct attacks, they may be vulnerable to more indirect attacks aimed at destabilizing public beliefs about them.

Democratic societies are vulnerable to (at least) two kinds of knowledge attacks that autocratic societies are not. First are flooding attacks that create confusion among citizens about what other citizens believe, making it far more difficult for them to organize among themselves. Second are confidence attacks. These attempt to undermine public confidence in the institutions of social aggregation, so that their results are no longer broadly accepted as legitimate representations of the citizenry.

Most obviously, democracies will function poorly when citizens do not believe that voting is fair. This makes democracies vulnerable to attacks aimed at destabilizing public confidence in voting institutions. For example, some of Russia’s hacking efforts against the 2016 presidential election were designed to undermine citizens’ confidence in the result. Russian hacking attacks against Ukraine, which targeted the systems through which election results were reported out, were intended to create confusion among voters about what the outcome actually was. Similarly, the “Guccifer 2.0” hacking identity, which has been attributed to Russian military intelligence, sought to suggest that the US electoral system had been compromised by the Democrats in the days immediately before the presidential vote. If, as expected, Donald Trump had lost the election, these claims could have been combined with the actual evidence of hacking to create the appearance that the election was fundamentally compromised.

Similar attacks against the perception of fairness are likely to be employed against the 2020 US census. Should efforts to include a citizenship question fail, some political actors who are disadvantaged by demographic changes such as increases in foreign-born residents and population shift from rural to urban and suburban areas will mount an effort to delegitimize the census results. Again, the genuine problems with the census, which include not only the citizenship question controversy but also serious underfunding, may help to bolster these efforts.

Mechanisms that allow interested actors and ordinary members of the public to comment on proposed policies are similarly vulnerable. For example, the Federal Communication Commission (FCC) announced in 2017 that it was proposing to repeal its net neutrality ruling. Interest groups backing the FCC rollback correctly anticipated a widespread backlash from a politically active coalition of net neutrality supporters. The result was warfare through public commenting. More than 22 million comments were filed, most of which appeared to be either automatically generated or form letters. Millions of these comments were apparently fake, and attached unsuspecting people’s names and email addresses to comments supporting the FCC’s repeal efforts. The vast majority of comments that were not either form letters or automatically generated opposed the FCC’s proposed ruling. The furor around the commenting process was magnified by claims from inside the FCC (later discredited) that the commenting process had also been subjected to a cyberattack.

We do not yet know the identity and motives of the actors behind the flood of fake comments, although the New York State Attorney-General’s office has issued subpoenas for records from a variety of lobbying and advocacy organizations. However, by demonstrating that the commenting process was readily manipulated, the attack made it less likely that the apparently genuine comments of those opposing the FCC’s proposed ruling would be treated as useful evidence of what the public believed. The furor over purported cyberattacks, and the FCC’s unwillingness itself to investigate the attack, have further undermined confidence in an online commenting system that was intended to make the FCC more open to the US public.

We do not know nearly enough about how democracies function as information systems. Generating a better understanding is itself a major policy challenge, which will require substantial resources and, even more importantly, common understandings and shared efforts across a variety of fields of knowledge that currently don’t really engage with each other.

However, even this basic sketch of democracy’s informational aspects can provide policy makers with some key lessons. The most important is that it may be as important to bolster shared public beliefs about key institutions such as voting, public commenting, and census taking against attack, as to bolster the mechanisms and related institutions themselves.

Specifically, many efforts to mitigate attacks against democratic systems begin with spreading public awareness and alarm about their vulnerabilities. This has the benefit of increasing awareness about real problems, but it may ­ especially if exaggerated for effect ­ damage public confidence in the very social aggregation institutions it means to protect. This may mean, for example, that public awareness efforts about Russian hacking that are based on flawed analytic techniques may themselves damage democracy by exaggerating the consequences of attacks.

More generally, this poses important challenges for policy efforts to secure social aggregation institutions against attacks. How can one best secure the systems themselves without damaging public confidence in them? At a minimum, successful policy measures will not simply identify problems in existing systems, but provide practicable, publicly visible, and readily understandable solutions to mitigate them.

We have focused on the problem of confidence attacks in this short essay, because they are both more poorly understood and more profound than flooding attacks. Given historical experience, democracy can probably survive some amount of disinformation about citizens’ beliefs better than it can survive attacks aimed at its core institutions of aggregation. Policy makers need a better understanding of the relationship between political institutions and social beliefs: specifically, the importance of the social aggregation institutions that allow democracies to understand themselves.

There are some low-hanging fruit. Very often, hardening these institutions against attacks on their confidence will go hand in hand with hardening them against attacks more generally. Thus, for example, reforms to voting that require permanent paper ballots and random auditing would not only better secure voting against manipulation, but would have moderately beneficial consequences for public beliefs too.

There are likely broadly similar solutions for public commenting systems. Here, the informational trade-offs are less profound than for voting, since there is no need to balance the requirement for anonymity (so that no-one can tell who voted for who ex post) against other requirements (to ensure that no-one votes twice or more, no votes are changed and so on). Instead, the balance to be struck is between general ease of access and security, making it easier, for example, to leverage secondary sources to validate identity.

Both the robustness of and public confidence in the US census and the other statistical systems that guide the allocation of resources could be improved by insulating them better from political control. For example, a similar system could be used to appoint the director of the census to that for the US Comptroller-General, requiring bipartisan agreement for appointment, and making it hard to exert post-appointment pressure on the official.

Our arguments also illustrate how some well-intentioned efforts to combat social influence operations may have perverse consequences for general social beliefs. The perception of security is at least as important as the reality of security, and any defenses against information attacks need to address both.

However, we need far better developed intellectual tools if we are to properly understand the trade-offs, instead of proposing clearly beneficial policies, and avoiding straightforward mistakes. Forging such tools will require computer security specialists to start thinking systematically about public beliefs as an integral part of the systems that they seek to defend. It will mean that more military oriented cybersecurity specialists need to think deeply about the functioning of democracy and the capacity of internal as well as external actors to disrupt it, rather than reaching for their standard toolkit of state-level deterrence tools. Finally, specialists in the workings of democracy have to learn how to think about democracy and its trade-offs in specifically informational terms.

This essay was written with Henry Farrell, and has previously appeared on Defusing Disinfo.

Posted on April 30, 2019 at 6:59 AM46 Comments

Friday Squid Blogging: Toraiz SQUID Digital Sequencer

Pioneer DJ has a new sequencer: the Toraiz SQUID: Sequencer Inspirational Device.

The 16-track sequencer is designed around jamming and performance with a host of features to create “happy accidents” and trigger random sequences, modulations and chords. There are 16 RGB pads for playing in your melodies and beats, and up to 64 patterns per each of the 16 tracks. There are eight notes of polyphony per track too, and a Harmonizer section to quickly input pre-determined chord shapes into your pattern, with up to six saved chords.

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Read my blog posting guidelines here.

Posted on April 26, 2019 at 4:14 PM56 Comments

Towards an Information Operations Kill Chain

Cyberattacks don’t magically happen; they involve a series of steps. And far from being helpless, defenders can disrupt the attack at any of those steps. This framing has led to something called the “cybersecurity kill chain“: a way of thinking about cyber defense in terms of disrupting the attacker’s process.

On a similar note, it’s time to conceptualize the “information operations kill chain.” Information attacks against democracies, whether they’re attempts to polarize political processes or to increase mistrust in social institutions, also involve a series of steps. And enumerating those steps will clarify possibilities for defense.

I first heard of this concept from Anthony Soules, a former National Security Agency (NSA) employee who now leads cybersecurity strategy for Amgen. He used the steps from the 1980s Russian “Operation Infektion,” designed to spread the rumor that the U.S. created the HIV virus as part of a weapons research program. A 2018 New York Times opinion video series on the operation described the Russian disinformation playbook in a series of seven “commandments,” or steps. The information landscape has changed since 1980, and information operations have changed as well. I have updated, and added to, those steps to bring them into the present day:

  • Step 1: Find the cracks in the fabric of society­—the social, demographic, economic and ethnic divisions.
  • Step 2: Seed distortion by creating alternative narratives. In the 1980s, this was a single “big lie,” but today it is more about many contradictory alternative truths­—a “firehose of falsehood“—­that distorts the political debate.
  • Step 3: Wrap those narratives around kernels of truth. A core of fact helps the falsities spread.
  • Step 4: (This step is new.) Build audiences, either by directly controlling a platform (like RT) or by cultivating relationships with people who will be receptive to those narratives.
  • Step 5: Conceal your hand; make it seem as if the stories came from somewhere else.
  • Step 6: Cultivate “useful idiots” who believe and amplify the narratives. Encourage them to take positions even more extreme than they would otherwise.
  • Step 7: Deny involvement, even if the truth is obvious.
  • Step 8: Play the long game. Strive for long-term impact over immediate impact.

These attacks have been so effective in part because, as victims, we weren’t aware of how they worked. Identifying these steps makes it possible to conceptualize­ and develop­ countermeasures designed to disrupt information operations. The result is the information operations kill chain:

  • Step 1: Find the cracks. There will always be open disagreements in a democratic society, but one defense is to shore up the institutions that make that society possible. Elsewhere I have written about the “common political knowledge” necessary for democracies to function. We need to strengthen that shared knowledge, thereby making it harder to exploit the inevitable cracks. We need to make it unacceptable­—or at least costly—­for domestic actors to use these same disinformation techniques in their own rhetoric and political maneuvering, and to highlight and encourage cooperation when politicians honestly work across party lines. We need to become reflexively suspicious of information that makes us angry at our fellow citizens. We cannot entirely fix the cracks, as they emerge from the diversity that makes democracies strong; but we can make them harder to exploit.
  • Step 2: Seed distortion. We need to teach better digital literacy. This alone cannot solve the problem, as much sharing of fake news is about social signaling, and those who share it care more about how it demonstrates their core beliefs than whether or not it is true. Still, it is part of the solution.
  • Step 3: Wrap the narratives around kernels of truth. Defenses involve exposing the untruths and distortions, but this is also complicated to put into practice. Psychologists have demonstrated that an inadvertent effect of debunking a piece of fake news is to amplify the message of that debunked story. Hence, it is essential to replace the fake news with accurate narratives that counter the propaganda. That kernel of truth is part of a larger true narrative. We need to ensure that the true narrative is legitimized and promoted.
  • Step 4: Build audiences. This is where social media companies have made all the difference. By allowing groups of like-minded people to find and talk to each other, these companies have given propagandists the ability to find audiences who are receptive to their messages. Here, the defenses center around making disinformation efforts less effective. Social media companies need to detect and delete accounts belonging to propagandists and bots and groups run by those propagandists.
  • Step 5: Conceal your hand. Here the answer is attribution, attribution, attribution. The quicker we can publicly attribute information operations, the more effectively we can defend against them. This will require efforts by both the social media platforms and the intelligence community, not just to detect information operations and expose them but also to be able to attribute attacks. Social media companies need to be more transparent about how their algorithms work and make source publications more obvious for online articles. Even small measures like the Honest Ads Act, requiring transparency in online political ads, will help. Where companies lack business incentives to do this, regulation will be the only answer.
  • Step 6: Cultivate useful idiots. We can mitigate the influence of people who disseminate harmful information, even if they are unaware they are amplifying deliberate propaganda. This does not mean that the government needs to regulate speech; corporate platforms already employ a variety of systems to amplify and diminish particular speakers and messages. Additionally, the antidote to the ignorant people who repeat and amplify propaganda messages is other influencers who respond with the truth­—in the words of one report, we must “make the truth louder.” Of course, there will always be true believers for whom no amount of fact-checking or counter speech will convince; this is not intended for them. Focus instead on persuading the persuadable.
  • Step 7: Deny everything. When attack attribution relies on secret evidence, it is easy for the attacker to deny involvement. Public attribution of information attacks must be accompanied by convincing evidence. This will be difficult when attribution involves classified intelligence information, but there is no alternative. Trusting the government without evidence, as the NSA’s Rob Joyce recommended in a 2016 talk, is not enough. Governments will have to disclose.
  • Step 8: Play the long game. Counterattacks can disrupt the attacker’s ability to maintain information operations, as U.S. Cyber Command did during the 2018 midterm elections. The NSA’s new policy of “persistent engagement” (see the article by, and interview with, U.S. Cyber Command Commander’s Gen. Paul Nakasone here) is a strategy to achieve this. Defenders can play the long game, too. We need to better encourage people to think for the long term: beyond the next election cycle or quarterly earnings report.

Permeating all of this is the importance of deterrence. Yes, we need to adjust our theories of deterrence to the realities of the information age and the democratization of attackers. If we can mitigate the effectiveness of information operations, if we can publicly attribute—if we can respond either diplomatically or otherwise­—we can deter these attacks from nation-states. But Russian interference in the 2016 presidential election shows not just that such actions are possible but also that they’re surprisingly inexpensive to run. As these tactics continue to be democratized, more people will attempt them. Deterring them will require a different theory.

None of these defensive actions is sufficient on its own. In this way, the information operations kill chain differs significantly from the more traditional cybersecurity kill chain. The latter defends against a series of steps taken sequentially by the attacker against a single target­—a network or an organization—and disrupting any one of those steps disrupts the entire attack. The information operations kill chain is fuzzier. Steps overlap. They can be conducted out of order. It’s a patchwork that can span multiple social media sites and news channels. It requires, as Henry Farrell and I have postulated, thinking of democracy itself as an information system. Disrupting an information operation will require more than disrupting one step at one time. The parallel isn’t perfect, but it’s a taxonomy by which to consider the range of possible defenses.

This information operations kill chain is a work in progress. If anyone has any other ideas for disrupting different steps of the information operations kill chain, please comment below. I will update this in a future essay.

This essay previously appeared on Lawfare.com.

EDITED TO ADD (10/10): I have updated the kill chain. (Blog link here.) Please use the updated version.

Posted on April 26, 2019 at 6:09 AM54 Comments

G7 Comes Out in Favor of Encryption Backdoors

From a G7 meeting of interior ministers in Paris this month, an “outcome document“:

Encourage Internet companies to establish lawful access solutions for their products and services, including data that is encrypted, for law enforcement and competent authorities to access digital evidence, when it is removed or hosted on IT servers located abroad or encrypted, without imposing any particular technology and while ensuring that assistance requested from internet companies is underpinned by the rule law and due process protection. Some G7 countries highlight the importance of not prohibiting, limiting, or weakening encryption;

There is a weird belief amongst policy makers that hacking an encryption system’s key management system is fundamentally different than hacking the system’s encryption algorithm. The difference is only technical; the effect is the same. Both are ways of weakening encryption.

Posted on April 23, 2019 at 9:14 AM26 Comments

Excellent Analysis of the Boeing 737 Max Software Problems

This is the best analysis of the software causes of the Boeing 737 MAX disasters that I have read.

Technically this is safety and not security; there was no attacker. But the fields are closely related and there are a lot of lessons for IoT security—and the security of complex socio-technical systems in general—in here.

EDITED TO ADD (4/30): A rebuttal of sorts.

EDITED TO ADD (5/13): The comments to this blog post are of particularly high quality, and I recommend them to anyone interested in the topic.

Posted on April 22, 2019 at 8:45 AM121 Comments

New DNS Hijacking Attacks

DNS hijacking isn’t new, but this seems to be an attack of unprecedented scale:

Researchers at Cisco’s Talos security division on Wednesday revealed that a hacker group it’s calling Sea Turtle carried out a broad campaign of espionage via DNS hijacking, hitting 40 different organizations. In the process, they went so far as to compromise multiple country-code top-level domains—the suffixes like .co.uk or .ru that end a foreign web address—putting all the traffic of every domain in multiple countries at risk.

The hackers’ victims include telecoms, internet service providers, and domain registrars responsible for implementing the domain name system. But the majority of the victims and the ultimate targets, Cisco believes, were a collection of mostly governmental organizations, including ministries of foreign affairs, intelligence agencies, military targets, and energy-related groups, all based in the Middle East and North Africa. By corrupting the internet’s directory system, hackers were able to silently use “man in the middle” attacks to intercept all internet data from email to web traffic sent to those victim organizations.

[…]

Cisco Talos said it couldn’t determine the nationality of the Sea Turtle hackers, and declined to name the specific targets of their spying operations. But it did provide a list of the countries where victims were located: Albania, Armenia, Cyprus, Egypt, Iraq, Jordan, Lebanon, Libya, Syria, Turkey, and the United Arab Emirates. Cisco’s Craig Williams confirmed that Armenia’s .am top-level domain was one of the “handful” that were compromised, but wouldn’t say which of the other countries’ top-level domains were similarly hijacked.

Another news article.

Posted on April 18, 2019 at 5:13 AM19 Comments

A "Department of Cybersecurity"

Presidential candidate John Delaney has announced a plan to create a Department of Cybersecurity.

I have long been in favor of a new federal agency to deal with Internet—and especially Internet of Things—security. The devil is in the details, of course, and it’s really easy to get this wrong. In Click Here to Kill Everybody, I outline a strawman proposal; I call it the “National Cyber Office” and model it on the Office of the Director of National Intelligence. But regardless of what you think of this idea, I’m glad that at least someone is talking about it.

Slashdot thread. News story.

EDITED TO ADD: Yes, this post is perilously close to presidential politics. Any comment that opines on the qualifications of this, or any other, presidential candidate will be deleted.

Posted on April 17, 2019 at 7:57 AM32 Comments

Vulnerabilities in the WPA3 Wi-Fi Security Protocol

Researchers have found several vulnerabilities in the WPA3 Wi-Fi security protocol:

The design flaws we discovered can be divided in two categories. The first category consists of downgrade attacks against WPA3-capable devices, and the second category consists of weaknesses in the Dragonfly handshake of WPA3, which in the Wi-Fi standard is better known as the Simultaneous Authentication of Equals (SAE) handshake. The discovered flaws can be abused to recover the password of the Wi-Fi network, launch resource consumption attacks, and force devices into using weaker security groups. All attacks are against home networks (i.e. WPA3-Personal), where one password is shared among all users.

News article. Research paper: “Dragonblood: A Security Analysis of WPA3’s SAE Handshake“:

Abstract: The WPA3 certification aims to secure Wi-Fi networks, and provides several advantages over its predecessor WPA2, such as protection against offline dictionary attacks and forward secrecy. Unfortunately, we show that WPA3 is affected by several design flaws,and analyze these flaws both theoretically and practically. Most prominently, we show that WPA3’s Simultaneous Authentication of Equals (SAE) handshake, commonly known as Dragonfly, is affected by password partitioning attacks. These attacks resemble dictionary attacks and allow an adversary to recover the password by abusing timing or cache-based side-channel leaks. Our side-channel attacks target the protocol’s password encoding method. For instance, our cache-based attack exploits SAE’s hash-to-curve algorithm. The resulting attacks are efficient and low cost: brute-forcing all 8-character lowercase password requires less than 125$in Amazon EC2 instances. In light of ongoing standardization efforts on hash-to-curve, Password-Authenticated Key Exchanges (PAKEs), and Dragonfly as a TLS handshake, our findings are also of more general interest. Finally, we discuss how to mitigate our attacks in a backwards-compatible manner, and explain how minor changes to the protocol could have prevented most of our attack

Posted on April 15, 2019 at 2:00 PM38 Comments

China Spying on Undersea Internet Cables

Supply chain security is an insurmountably hard problem. The recent focus is on Chinese 5G equipment, but the problem is much broader. This opinion piece looks at undersea communications cables:

But now the Chinese conglomerate Huawei Technologies, the leading firm working to deliver 5G telephony networks globally, has gone to sea. Under its Huawei Marine Networks component, it is constructing or improving nearly 100 submarine cables around the world. Last year it completed a cable stretching nearly 4,000 miles from Brazil to Cameroon. (The cable is partly owned by China Unicom, a state-controlled telecom operator.) Rivals claim that Chinese firms are able to lowball the bidding because they receive subsidies from Beijing.

Just as the experts are justifiably concerned about the inclusion of espionage “back doors” in Huawei’s 5G technology, Western intelligence professionals oppose the company’s engagement in the undersea version, which provides a much bigger bang for the buck because so much data rides on so few cables.

This shouldn’t surprise anyone. For years, the US and the Five Eyes have had a monopoly on spying on the Internet around the globe. Other countries want in.

As I have repeatedly said, we need to decide if we are going to build our future Internet systems for security or surveillance. Either everyone gets to spy, or no one gets to spy. And I believe we must choose security over surveillance, and implement a defense-dominant strategy.

Posted on April 15, 2019 at 6:30 AM28 Comments

Maliciously Tampering with Medical Imagery

In what I am sure is only a first in many similar demonstrations, researchers are able to add or remove cancer signs from CT scans. The results easily fool radiologists.

I don’t think the medical device industry has thought at all about data integrity and authentication issues. In a world where sensor data of all kinds is undetectably manipulatable, they’re going to have to start.

Research paper. Slashdot thread.

Posted on April 12, 2019 at 11:13 AM13 Comments

New Version of Flame Malware Discovered

Flame was discovered in 2012, linked to Stuxnet, and believed to be American in origin. It has recently been linked to more modern malware through new analysis tools that find linkages between different software.

Seems that Flame did not disappear after it was discovered, as was previously thought. (Its controllers used a kill switch to disable and erase it.) It was rewritten and reintroduced.

Note that the article claims that Flame was believed to be Israeli in origin. That’s wrong; most people who have an opinion believe it is from the NSA.

Posted on April 12, 2019 at 6:25 AM5 Comments

TajMahal Spyware

Kaspersky has released details about a sophisticated nation-state spyware it calls TajMahal:

The TajMahal framework’s 80 modules, Shulmin says, comprise not only the typical keylogging and screengrabbing features of spyware, but also never-before-seen and obscure tricks. It can intercept documents in a printer queue, and keep track of “files of interest,” automatically stealing them if a USB drive is inserted into the infected machine. And that unique spyware toolkit, Kaspersky says, bears none of the fingerprints of any known nation-state hacker group.

It was found on the servers of an “embassy of a Central Asian country.” No speculation on who wrote and controls it.

More details.

Posted on April 11, 2019 at 6:24 AM14 Comments

How the Anonymous Artist Banksy Authenticates His or Her Work

Interesting scheme:

It all starts off with a fairly bog standard gallery style certificate. Details of the work, the authenticating agency, a bit of embossing and a large impressive signature at the bottom. Exactly the sort of things that can be easily copied by someone on a mission to create the perfect fake.

That torn-in-half banknote though? Never mind signatures, embossing or wax seals. The Di Faced Tenner is doing all the authentication heavy lifting here.

The tear is what uniquely separates the private key, the half of the note kept secret under lock and key at Pest Control, with the public key. The public key is the half of the note attached to the authentication certificate which gets passed on with the print, and allows its authenticity to be easily verified.

We have no idea what has been written on Pest Control’s private half of the note. Which means it can’t be easily recreated, and that empowers Pest Control to keep the authoritative list of who currently owns each authenticated Banksy work.

Posted on April 10, 2019 at 5:44 AM22 Comments

Hey Secret Service: Don't Plug Suspect USB Sticks into Random Computers

I just noticed this bit from the incredibly weird story of the Chinese woman arrested at Mar-a-Lago:

Secret Service agent Samuel Ivanovich, who interviewed Zhang on the day of her arrest, testified at the hearing. He stated that when another agent put Zhang’s thumb drive into his computer, it immediately began to install files, a “very out-of-the-ordinary” event that he had never seen happen before during this kind of analysis. The agent had to immediately stop the analysis to halt any further corruption of his computer, Ivanovich testified. The analysis is ongoing but still inconclusive, he said.

This is what passes for forensics at the Secret Service? I expect better.

EDITED TO ADD (4/9): I know this post is peripherally related to Trump. I know some readers can’t help themselves from talking about broader issues surrounding Trump, Russia, and so on. Please do not comment to those posts. I will delete them as soon as I see them.

EDITED TO ADD (4/9): Ars Technica has more detail.

Posted on April 9, 2019 at 6:54 AM44 Comments

Unhackable Cryptography?

A recent article overhyped the release of EverCrypt, a cryptography library created using formal methods to prove security against specific attacks.

The Quanta magazine article sets off a series of “snake-oil” alarm bells. The author’s Github README is more measured and accurate, and illustrates what a cool project this really is. But it’s not “hacker-proof cryptographic code.”

Posted on April 5, 2019 at 9:31 AM25 Comments

Former Mozilla CTO Harassed at the US Border

This is a pretty awful story of how Andreas Gal, former Mozilla CTO and US citizen, was detained and threatened at the US border. CBP agents demanded that he unlock his phone and computer.

Know your rights when you enter the US. The EFF publishes a handy guide. And if you want to encrypt your computer so that you are unable to unlock it on demand, here’s my guide. Remember not to lie to a customs officer; that’s a crime all by itself.

Posted on April 4, 2019 at 2:10 PM39 Comments

Adversarial Machine Learning against Tesla's Autopilot

Researchers have been able to fool Tesla’s autopilot in a variety of ways, including convincing it to drive into oncoming traffic. It requires the placement of stickers on the road.

Abstract: Keen Security Lab has maintained the security research work on Tesla vehicle and shared our research results on Black Hat USA 2017 and 2018 in a row. Based on the ROOT privilege of the APE (Tesla Autopilot ECU, software version 18.6.1), we did some further interesting research work on this module. We analyzed the CAN messaging functions of APE, and successfully got remote control of the steering system in a contact-less way. We used an improved optimization algorithm to generate adversarial examples of the features (autowipers and lane recognition) which make decisions purely based on camera data, and successfully achieved the adversarial example attack in the physical world. In addition, we also found a potential high-risk design weakness of the lane recognition when the vehicle is in Autosteer mode. The whole article is divided into four parts: first a brief introduction of Autopilot, after that we will introduce how to send control commands from APE to control the steering system when the car is driving. In the last two sections, we will introduce the implementation details of the autowipers and lane recognition features, as well as our adversarial example attacking methods in the physical world. In our research, we believe that we made three creative contributions:

  1. We proved that we can remotely gain the root privilege of APE and control the steering system.
  2. We proved that we can disturb the autowipers function by using adversarial examples in the physical world.
  3. We proved that we can mislead the Tesla car into the reverse lane with minor changes on the road.

You can see the stickers in this photo. They’re unobtrusive.

This is machine learning’s big problem, and I think solving it is a lot harder than many believe.

Posted on April 4, 2019 at 6:18 AM34 Comments

How Political Campaigns Use Personal Data

Really interesting report from Tactical Tech.

Data-driven technologies are an inevitable feature of modern political campaigning. Some argue that they are a welcome addition to politics as normal and a necessary and modern approach to democratic processes; others say that they are corrosive and diminish trust in already flawed political systems. The use of these technologies in political campaigning is not going away; in fact, we can only expect their sophistication and prevalence to grow. For this reason, the techniques and methods need to be reviewed outside the dichotomy of ‘good’ or ‘bad’ and beyond the headlines of ‘disinformation campaigns’.

All the data-driven methods presented in this guide would not exist without the commercial digital marketing and advertising industry. From analysing behavioural data to A/B testing and from geotargeting to psychometric profiling, political parties are using the same techniques to sell political candidates to voters that companies use to sell shoes to consumers. The question is, is that appropriate? And what impact does it have not only on individual voters, who may or may not be persuad-ed, but on the political environment as a whole?

The practice of political strategists selling candidates as brands is not new. Vance Packard wrote about the ‘depth probing’ techniques of ‘political persuaders’ as early as 1957. In his book, ‘The Hidden Persuaders’, Packard described political strategies designed to sell candidates to voters ‘like toothpaste’, and how public relations directors at the time boasted that ‘scientific methods take the guesswork out of politics’.5 In this sense, what we have now is a logical progression of the digitisation of marketing techniques and political persuasion techniques.

Posted on April 3, 2019 at 6:26 AM20 Comments

Hacking Instagram to Get Free Meals in Exchange for Positive Reviews

This is a fascinating hack:

In today’s digital age, a large Instagram audience is considered a valuable currency. I had also heard through the grapevine that I could monetize a large following—or in my desired case—use it to have my meals paid for. So I did just that.

I created an Instagram page that showcased pictures of New York City’s skylines, iconic spots, elegant skyscrapers ­—you name it. The page has amassed a following of over 25,000 users in the NYC area and it’s still rapidly growing.

I reach out restaurants in the area either via Instagram’s direct messaging or email and offer to post a positive review in return for a free entree or at least a discount. Almost every restaurant I’ve messaged came back at me with a compensated meal or a gift card. Most places have an allocated marketing budget for these types of things so they were happy to offer me a free dining experience in exchange for a promotion. I’ve ended up giving some of these meals away to my friends and family because at times I had too many queued up to use myself.

The beauty of this all is that I automated the whole thing. And I mean 100% of it. I wrote code that finds these pictures or videos, makes a caption, adds hashtags, credits where the picture or video comes from, weeds out bad or spammy posts, posts them, follows and unfollows users, likes pictures, monitors my inbox, and most importantly—both direct messages and emails restaurants about a potential promotion. Since its inception, I haven’t even really logged into the account. I spend zero time on it. It’s essentially a robot that operates like a human, but the average viewer can’t tell the difference. And as the programmer, I get to sit back and admire its (and my) work.

So much going on in this project.

Posted on April 2, 2019 at 6:16 AM23 Comments

Recovering Smartphone Typing from Microphone Sounds

Yet another side-channel attack on smartphones: “Hearing your touch: A new acoustic side channel on smartphones,” by Ilia Shumailov, Laurent Simon, Jeff Yan, and Ross Anderson.

Abstract: We present the first acoustic side-channel attack that recovers what users type on the virtual keyboard of their touch-screen smartphone or tablet. When a user taps the screen with a finger, the tap generates a sound wave that propagates on the screen surface and in the air. We found the device’s microphone(s) can recover this wave and “hear” the finger’s touch, and the wave’s distortions are characteristic of the tap’s location on the screen. Hence, by recording audio through the built-in microphone(s), a malicious app can infer text as the user enters it on their device. We evaluate the effectiveness of the attack with 45 participants in a real-world environment on an Android tablet and an Android smartphone. For the tablet, we recover 61% of 200 4-digit PIN-codes within 20 attempts, even if the model is not trained with the victim’s data. For the smartphone, we recover 9 words of size 7-13 letters with 50 attempts in a common side-channel attack benchmark. Our results suggest that it not always sufficient to rely on isolation mechanisms such as TrustZone to protect user input. We propose and discuss hardware, operating-system and application-level mechanisms to block this attack more effectively. Mobile devices may need a richer capability model, a more user-friendly notification system for sensor usage and a more thorough evaluation of the information leaked by the underlying hardware.

Blog post.

Posted on April 1, 2019 at 9:44 AM15 Comments

Sidebar photo of Bruce Schneier by Joe MacInnis.