National Security Risks of Late-Stage Capitalism

Early in 2020, cyberspace attackers apparently working for the Russian government compromised a piece of widely used network management software made by a company called SolarWinds. The hack gave the attackers access to the computer networks of some 18,000 of SolarWinds’s customers, including US government agencies such as the Homeland Security Department and State Department, American nuclear research labs, government contractors, IT companies and nongovernmental agencies around the world.

It was a huge attack, with major implications for US national security. The Senate Intelligence Committee is scheduled to hold a hearing on the breach on Tuesday. Who is at fault?

The US government deserves considerable blame, of course, for its inadequate cyberdefense. But to see the problem only as a technical shortcoming is to miss the bigger picture. The modern market economy, which aggressively rewards corporations for short-term profits and aggressive cost-cutting, is also part of the problem: Its incentive structure all but ensures that successful tech companies will end up selling insecure products and services.

Like all for-profit corporations, SolarWinds aims to increase shareholder value by minimizing costs and maximizing profit. The company is owned in large part by Silver Lake and Thoma Bravo, private-equity firms known for extreme cost-cutting.

SolarWinds certainly seems to have underspent on security. The company outsourced much of its software engineering to cheaper programmers overseas, even though that typically increases the risk of security vulnerabilities. For a while, in 2019, the update server’s password for SolarWinds’s network management software was reported to be “solarwinds123.” Russian hackers were able to breach SolarWinds’s own email system and lurk there for months. Chinese hackers appear to have exploited a separate vulnerability in the company’s products to break into US government computers. A cybersecurity adviser for the company said that he quit after his recommendations to strengthen security were ignored.

There is no good reason to underspend on security other than to save money — especially when your clients include government agencies around the world and when the technology experts that you pay to advise you are telling you to do more.

As the economics writer Matt Stoller has suggested, cybersecurity is a natural area for a technology company to cut costs because its customers won’t notice unless they are hacked ­– and if they are, they will have already paid for the product. In other words, the risk of a cyberattack can be transferred to the customers. Doesn’t this strategy jeopardize the possibility of long-term, repeat customers? Sure, there’s a danger there –­ but investors are so focused on short-term gains that they’re too often willing to take that risk.

The market loves to reward corporations for risk-taking when those risks are largely borne by other parties, like taxpayers. This is known as “privatizing profits and socializing losses.” Standard examples include companies that are deemed “too big to fail,” which means that society as a whole pays for their bad luck or poor business decisions. When national security is compromised by high-flying technology companies that fob off cybersecurity risks onto their customers, something similar is at work.

Similar misaligned incentives affect your everyday cybersecurity, too. Your smartphone is vulnerable to something called SIM-swap fraud because phone companies want to make it easy for you to frequently get a new phone — and they know that the cost of fraud is largely borne by customers. Data brokers and credit bureaus that collect, use, and sell your personal data don’t spend a lot of money securing it because it’s your problem if someone hacks them and steals it. Social media companies too easily let hate speech and misinformation flourish on their platforms because it’s expensive and complicated to remove it, and they don’t suffer the immediate costs ­– indeed, they tend to profit from user engagement regardless of its nature.

There are two problems to solve. The first is information asymmetry: buyers can’t adequately judge the security of software products or company practices. The second is a perverse incentive structure: the market encourages companies to make decisions in their private interest, even if that imperils the broader interests of society. Together these two problems result in companies that save money by taking on greater risk and then pass off that risk to the rest of us, as individuals and as a nation.

The only way to force companies to provide safety and security features for customers and users is with government intervention. Companies need to pay the true costs of their insecurities, through a combination of laws, regulations, and legal liability. Governments routinely legislate safety — pollution standards, automobile seat belts, lead-free gasoline, food service regulations. We need to do the same with cybersecurity: the federal government should set minimum security standards for software and software development.

In today’s underregulated markets, it’s just too easy for software companies like SolarWinds to save money by skimping on security and to hope for the best. That’s a rational decision in today’s free-market world, and the only way to change that is to change the economic incentives.

This essay previously appeared in the New York Times.

Posted on March 1, 2021 at 6:12 AM8 Comments

The Problem with Treating Data as a Commodity

Excellent Brookings paper: “Why data ownership is the wrong approach to protecting privacy.”

From the introduction:

Treating data like it is property fails to recognize either the value that varieties of personal information serve or the abiding interest that individuals have in their personal information even if they choose to “sell” it. Data is not a commodity. It is information. Any system of information rights­ — whether patents, copyrights, and other intellectual property, or privacy rights — ­presents some tension with strong interest in the free flow of information that is reflected by the First Amendment. Our personal information is in demand precisely because it has value to others and to society across a myriad of uses.

From the conclusion:

Privacy legislation should empower individuals through more layered and meaningful transparency and individual rights to know, correct, and delete personal information in databases held by others. But relying entirely on individual control will not do enough to change a system that is failing individuals, and trying to reinforce control with a property interest is likely to fail society as well. Rather than trying to resolve whether personal information belongs to individuals or to the companies that collect it, a baseline federal privacy law should directly protect the abiding interest that individuals have in that information and also enable the social benefits that flow from sharing information.

Posted on February 26, 2021 at 6:28 AM29 Comments

On Chinese-Owned Technology Platforms

I am a co-author on a report published by the Hoover Institution: “Chinese Technology Platforms Operating in the United States.” From a blog post:

The report suggests a comprehensive framework for understanding and assessing the risks posed by Chinese technology platforms in the United States and developing tailored responses. It starts from the common view of the signatories — one reflected in numerous publicly available threat assessments — that China’s power is growing, that a large part of that power is in the digital sphere, and that China can and will wield that power in ways that adversely affect our national security. However, the specific threats and risks posed by different Chinese technologies vary, and effective policies must start with a targeted understanding of the nature of risks and an assessment of the impact US measures will have on national security and competitiveness. The goal of the paper is not to specifically quantify the risk of any particular technology, but rather to analyze the various threats, put them into context, and offer a framework for assessing proposed responses in ways that the signatories hope can aid those doing the risk analysis in individual cases.

Posted on February 25, 2021 at 6:19 AM22 Comments

Twelve-Year-Old Vulnerability Found in Windows Defender

Researchers found, and Microsoft has patched, a vulnerability in Windows Defender that has been around for twelve years. There is no evidence that anyone has used the vulnerability during that time.

The flaw, discovered by researchers at the security firm SentinelOne, showed up in a driver that Windows Defender — renamed Microsoft Defender last year — uses to delete the invasive files and infrastructure that malware can create. When the driver removes a malicious file, it replaces it with a new, benign one as a sort of placeholder during remediation. But the researchers discovered that the system doesn’t specifically verify that new file. As a result, an attacker could insert strategic system links that direct the driver to overwrite the wrong file or even run malicious code.

It isn’t unusual that vulnerabilities lie around for this long. They can’t be fixed until someone finds them, and people aren’t always looking.

Posted on February 24, 2021 at 6:19 AM31 Comments

Dependency Confusion: Another Supply-Chain Vulnerability

Alex Birsan writes about being able to install malware into proprietary corporate software by naming the code files to be identical to internal corporate code files. From a ZDNet article:

Today, developers at small or large companies use package managers to download and import libraries that are then assembled together using build tools to create a final app.

This app can be offered to the company’s customers or can be used internally at the company as an employee tool.

But some of these apps can also contain proprietary or highly-sensitive code, depending on their nature. For these apps, companies will often use private libraries that they store inside a private (internal) package repository, hosted inside the company’s own network.

When apps are built, the company’s developers will mix these private libraries with public libraries downloaded from public package portals like npm, PyPI, NuGet, or others.

[…]

Researchers showed that if an attacker learns the names of private libraries used inside a company’s app-building process, they could register these names on public package repositories and upload public libraries that contain malicious code.

The “dependency confusion” attack takes place when developers build their apps inside enterprise environments, and their package manager prioritizes the (malicious) library hosted on the public repository instead of the internal library with the same name.

The research team said they put this discovery to the test by searching for situations where big tech firms accidentally leaked the names of various internal libraries and then registered those same libraries on package repositories like npm, RubyGems, and PyPI.

Using this method, researchers said they successfully loaded their (non-malicious) code inside apps used by 35 major tech firms, including the likes of Apple, Microsoft, PayPal, Shopify, Netflix, Yelp, Uber, and others.

Clever attack, and one that has netted him $130K in bug bounties.

More news articles.

Posted on February 23, 2021 at 6:18 AM23 Comments

GPS Vulnerabilities

Really good op-ed in the New York Times about how vulnerable the GPS system is to interference, spoofing, and jamming — and potential alternatives.

The 2018 National Defense Authorization Act included funding for the Departments of Defense, Homeland Security and Transportation to jointly conduct demonstrations of various alternatives to GPS, which were concluded last March. Eleven potential systems were tested, including eLoran, a low-frequency, high-power timing and navigation system transmitted from terrestrial towers at Coast Guard facilities throughout the United States.

“China, Russia, Iran, South Korea and Saudi Arabia all have eLoran systems because they don’t want to be as vulnerable as we are to disruptions of signals from space,” said Dana Goward, the president of the Resilient Navigation and Timing Foundation, a nonprofit that advocates for the implementation of an eLoran backup for GPS.

Also under consideration by federal authorities are timing systems delivered via fiber optic network and satellite systems in a lower orbit than GPS, which therefore have a stronger signal, making them harder to hack. A report on the technologies was submitted to Congress last week.

GPS is a piece of our critical infrastructure that is essential to a lot of the rest of our critical infrastructure. It needs to be more secure.

Posted on February 22, 2021 at 6:17 AM15 Comments

Router Security

This report is six months old, and I don’t know anything about the organization that produced it, but it has some alarming data about router security.

Conclusion: Our analysis showed that Linux is the most used OS running on more than 90% of the devices. However, many routers are powered by very old versions of Linux. Most devices are still powered with a 2.6 Linux kernel, which is no longer maintained for many years. This leads to a high number of critical and high severity CVEs affecting these devices.

Since Linux is the most used OS, exploit mitigation techniques could be enabled very easily. Anyhow, they are used quite rarely by most vendors except the NX feature.

A published private key provides no security at all. Nonetheless, all but one vendor spread several private keys in almost all firmware images.

Mirai used hard-coded login credentials to infect thousands of embedded devices in the last years. However, hard-coded credentials can be found in many of the devices and some of them are well known or at least easy crackable.

However, we can tell for sure that the vendors prioritize security differently. AVM does better job than the other vendors regarding most aspects. ASUS and Netgear do a better job in some aspects than D-Link, Linksys, TP-Link and Zyxel.

Additionally, our evaluation showed that large scale automated security analysis of embedded devices is possible today utilizing just open source software. To sum it up, our analysis shows that there is no router without flaws and there is no vendor who does a perfect job regarding all security aspects. Much more effort is needed to make home routers as secure as current desktop of server systems.

One comment on the report:

One-third ship with Linux kernel version 2.6.36 was released in October 2010. You can walk into a store today and buy a brand new router powered by software that’s almost 10 years out of date! This outdated version of the Linux kernel has 233 known security vulnerabilities registered in the Common Vulnerability and Exposures (CVE) database. The average router contains 26 critically-rated security vulnerabilities, according to the study.

We know the reasons for this. Most routers are designed offshore, by third parties, and then private labeled and sold by the vendors you’ve heard of. Engineering teams come together, design and build the router, and then disperse. There’s often no one around to write patches, and most of the time router firmware isn’t even patchable. The way to update your home router is to throw it away and buy a new one.

And this paper demonstrates that even the new ones aren’t likely to be secure.

Posted on February 19, 2021 at 6:00 AM22 Comments

Sidebar photo of Bruce Schneier by Joe MacInnis.