Page 2

Friday Squid Blogging: Peruvian Squid-Fishing Regulation Drives Chinese Fleets Away

A Peruvian oversight law has the opposite effect:

Peru in 2020 began requiring any foreign fishing boat entering its ports to use a vessel monitoring system allowing its activities to be tracked in real time 24 hours a day. The equipment, which tracks a vessel’s geographic position and fishing activity through a proprietary satellite communication system, sought to provide authorities with visibility into several hundred Chinese squid vessels that every year amass off the west coast of South America.

[…]

Instead of increasing oversight, the new Peruvian regulations appear to have driven Chinese ships away from the country’s ports—and kept crews made up of impoverished Filipinos and Indonesians at sea for longer periods, exposing them to abuse, according to new research published by Peruvian fishing consultancy Artisonal.

Two things to note here. One is that the Peruvian law was easy to hack, which China promptly did. The second is that no nation-state has the proper regulatory footprint to manage the world’s oceans. These are global issues, and need global solutions. Of course, our current society is terrible at global solutions—to anything.

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Read my blog posting guidelines here.

Posted on May 19, 2023 at 5:06 PMView Comments

Microsoft Secure Boot Bug

Microsoft is currently patching a zero-day Secure-Boot bug.

The BlackLotus bootkit is the first-known real-world malware that can bypass Secure Boot protections, allowing for the execution of malicious code before your PC begins loading Windows and its many security protections. Secure Boot has been enabled by default for over a decade on most Windows PCs sold by companies like Dell, Lenovo, HP, Acer, and others. PCs running Windows 11 must have it enabled to meet the software’s system requirements.

Microsoft says that the vulnerability can be exploited by an attacker with either physical access to a system or administrator rights on a system. It can affect physical PCs and virtual machines with Secure Boot enabled.

That’s important. This is a nasty vulnerability, but it takes some work to exploit it.

The problem with the patch is that it breaks backwards compatibility: “…once the fixes have been enabled, your PC will no longer be able to boot from older bootable media that doesn’t include the fixes.”

And:

Not wanting to suddenly render any users’ systems unbootable, Microsoft will be rolling the update out in phases over the next few months. The initial version of the patch requires substantial user intervention to enable—you first need to install May’s security updates, then use a five-step process to manually apply and verify a pair of “revocation files” that update your system’s hidden EFI boot partition and your registry. These will make it so that older, vulnerable versions of the bootloader will no longer be trusted by PCs.

A second update will follow in July that won’t enable the patch by default but will make it easier to enable. A third update in “first quarter 2024” will enable the fix by default and render older boot media unbootable on all patched Windows PCs. Microsoft says it is “looking for opportunities to accelerate this schedule,” though it’s unclear what that would entail.

So it’ll be almost a year before this is completely fixed.

Posted on May 17, 2023 at 7:01 AMView Comments

Micro-Star International Signing Key Stolen

Micro-Star International—aka MSI—had its UEFI signing key stolen last month.

This raises the possibility that the leaked key could push out updates that would infect a computer’s most nether regions without triggering a warning. To make matters worse, Matrosov said, MSI doesn’t have an automated patching process the way Dell, HP, and many larger hardware makers do. Consequently, MSI doesn’t provide the same kind of key revocation capabilities.

Delivering a signed payload isn’t as easy as all that. “Gaining the kind of control required to compromise a software build system is generally a non-trivial event that requires a great deal of skill and possibly some luck.” But it just got a whole lot easier.

Posted on May 15, 2023 at 7:18 AMView Comments

Ted Chiang on the Risks of AI

Ted Chiang has an excellent essay in the New Yorker: “Will A.I. Become the New McKinsey?”

The question we should be asking is: as A.I. becomes more powerful and flexible, is there any way to keep it from being another version of McKinsey? The question is worth considering across different meanings of the term “A.I.” If you think of A.I. as a broad set of technologies being marketed to companies to help them cut their costs, the question becomes: how do we keep those technologies from working as “capital’s willing executioners”? Alternatively, if you imagine A.I. as a semi-autonomous software program that solves problems that humans ask it to solve, the question is then: how do we prevent that software from assisting corporations in ways that make people’s lives worse? Suppose you’ve built a semi-autonomous A.I. that’s entirely obedient to humans­—one that repeatedly checks to make sure it hasn’t misinterpreted the instructions it has received. This is the dream of many A.I. researchers. Yet such software could easily still cause as much harm as McKinsey has.

Note that you cannot simply say that you will build A.I. that only offers pro-social solutions to the problems you ask it to solve. That’s the equivalent of saying that you can defuse the threat of McKinsey by starting a consulting firm that only offers such solutions. The reality is that Fortune 100 companies will hire McKinsey instead of your pro-social firm, because McKinsey’s solutions will increase shareholder value more than your firm’s solutions will. It will always be possible to build A.I. that pursues shareholder value above all else, and most companies will prefer to use that A.I. instead of one constrained by your principles.

EDITED TO ADD: Ted Chiang’s previous essay, “ChatGPT Is a Blurry JPEG of the Web” is also worth reading.

Posted on May 12, 2023 at 10:00 AMView Comments

Building Trustworthy AI

We will all soon get into the habit of using AI tools for help with everyday problems and tasks. We should get in the habit of questioning the motives, incentives, and capabilities behind them, too.

Imagine you’re using an AI chatbot to plan a vacation. Did it suggest a particular resort because it knows your preferences, or because the company is getting a kickback from the hotel chain? Later, when you’re using another AI chatbot to learn about a complex economic issue, is the chatbot reflecting your politics or the politics of the company that trained it?

For AI to truly be our assistant, it needs to be trustworthy. For it to be trustworthy, it must be under our control; it can’t be working behind the scenes for some tech monopoly. This means, at a minimum, the technology needs to be transparent. And we all need to understand how it works, at least a little bit.

Amid the myriad warnings about creepy risks to well-being, threats to democracy, and even existential doom that have accompanied stunning recent developments in artificial intelligence (AI)—and large language models (LLMs) like ChatGPT and GPT-4—one optimistic vision is abundantly clear: this technology is useful. It can help you find information, express your thoughts, correct errors in your writing, and much more. If we can navigate the pitfalls, its assistive benefit to humanity could be epoch-defining. But we’re not there yet.

Let’s pause for a moment and imagine the possibilities of a trusted AI assistant. It could write the first draft of anything: emails, reports, essays, even wedding vows. You would have to give it background information and edit its output, of course, but that draft would be written by a model trained on your personal beliefs, knowledge, and style. It could act as your tutor, answering questions interactively on topics you want to learn about—in the manner that suits you best and taking into account what you already know. It could assist you in planning, organizing, and communicating: again, based on your personal preferences. It could advocate on your behalf with third parties: either other humans or other bots. And it could moderate conversations on social media for you, flagging misinformation, removing hate or trolling, translating for speakers of different languages, and keeping discussions on topic; or even mediate conversations in physical spaces, interacting through speech recognition and synthesis capabilities.

Today’s AIs aren’t up for the task. The problem isn’t the technology—that’s advancing faster than even the experts had guessed—it’s who owns it. Today’s AIs are primarily created and run by large technology companies, for their benefit and profit. Sometimes we are permitted to interact with the chatbots, but they’re never truly ours. That’s a conflict of interest, and one that destroys trust.

The transition from awe and eager utilization to suspicion to disillusionment is a well worn one in the technology sector. Twenty years ago, Google’s search engine rapidly rose to monopolistic dominance because of its transformative information retrieval capability. Over time, the company’s dependence on revenue from search advertising led them to degrade that capability. Today, many observers look forward to the death of the search paradigm entirely. Amazon has walked the same path, from honest marketplace to one riddled with lousy products whose vendors have paid to have the company show them to you. We can do better than this. If each of us are going to have an AI assistant helping us with essential activities daily and even advocating on our behalf, we each need to know that it has our interests in mind. Building trustworthy AI will require systemic change.

First, a trustworthy AI system must be controllable by the user. That means that the model should be able to run on a user’s owned electronic devices (perhaps in a simplified form) or within a cloud service that they control. It should show the user how it responds to them, such as when it makes queries to search the web or external services, when it directs other software to do things like sending an email on a user’s behalf, or modifies the user’s prompts to better express what the company that made it thinks the user wants. It should be able to explain its reasoning to users and cite its sources. These requirements are all well within the technical capabilities of AI systems.

Furthermore, users should be in control of the data used to train and fine-tune the AI system. When modern LLMs are built, they are first trained on massive, generic corpora of textual data typically sourced from across the Internet. Many systems go a step further by fine-tuning on more specific datasets purpose built for a narrow application, such as speaking in the language of a medical doctor, or mimicking the manner and style of their individual user. In the near future, corporate AIs will be routinely fed your data, probably without your awareness or your consent. Any trustworthy AI system should transparently allow users to control what data it uses.

Many of us would welcome an AI-assisted writing application fine tuned with knowledge of which edits we have accepted in the past and which we did not. We would be more skeptical of a chatbot knowledgeable about which of their search results led to purchases and which did not.

You should also be informed of what an AI system can do on your behalf. Can it access other apps on your phone, and the data stored with them? Can it retrieve information from external sources, mixing your inputs with details from other places you may or may not trust? Can it send a message in your name (hopefully based on your input)? Weighing these types of risks and benefits will become an inherent part of our daily lives as AI-assistive tools become integrated with everything we do.

Realistically, we should all be preparing for a world where AI is not trustworthy. Because AI tools can be so incredibly useful, they will increasingly pervade our lives, whether we trust them or not. Being a digital citizen of the next quarter of the twenty-first century will require learning the basic ins and outs of LLMs so that you can assess their risks and limitations for a given use case. This will better prepare you to take advantage of AI tools, rather than be taken advantage by them.

In the world’s first few months of widespread use of models like ChatGPT, we’ve learned a lot about how AI creates risks for users. Everyone has heard by now that LLMs “hallucinate,” meaning that they make up “facts” in their outputs, because their predictive text generation systems are not constrained to fact check their own emanations. Many users learned in March that information they submit as prompts to systems like ChatGPT may not be kept private after a bug revealed users’ chats. Your chat histories are stored in systems that may be insecure.

Researchers have found numerous clever ways to trick chatbots into breaking their safety controls; these work largely because many of the “rules” applied to these systems are soft, like instructions given to a person, rather than hard, like coded limitations on a product’s functions. It’s as if we are trying to keep AI safe by asking it nicely to drive carefully, a hopeful instruction, rather than taking away its keys and placing definite constraints on its abilities.

These risks will grow as companies grant chatbot systems more capabilities. OpenAI is providing developers wide access to build tools on top of GPT: tools that give their AI systems access to your email, to your personal account information on websites, and to computer code. While OpenAI is applying safety protocols to these integrations, it’s not hard to imagine those being relaxed in a drive to make the tools more useful. It seems likewise inevitable that other companies will come along with less bashful strategies for securing AI market share.

Just like with any human, building trust with an AI will be hard won through interaction over time. We will need to test these systems in different contexts, observe their behavior, and build a mental model for how they will respond to our actions. Building trust in that way is only possible if these systems are transparent about their capabilities, what inputs they use and when they will share them, and whose interests they are evolving to represent.

This essay was written with Nathan Sanders, and previously appeared on Gizmodo.com.

Posted on May 11, 2023 at 7:17 AMView Comments

FBI Disables Russian Malware

Reuters is reporting that the FBI “had identified and disabled malware wielded by Russia’s FSB security service against an undisclosed number of American computers, a move they hoped would deal a death blow to one of Russia’s leading cyber spying programs.”

The headline says that the FBI “sabotaged” the malware, which seems to be wrong.

Presumably we will learn more soon.

EDITED TO ADD: New York Times story.

EDITED TO ADD: Maybe “sabotaged” is the right word. The FBI hacked the malware so that it disabled itself.

Despite the bravado of its developers, Snake is among the most sophisticated pieces of malware ever found, the FBI said. The modular design, custom encryption layers, and high-caliber quality of the code base have made it hard if not impossible for antivirus software to detect. As FBI agents continued to monitor Snake, however, they slowly uncovered some surprising weaknesses. For one, there was a critical cryptographic key with a prime length of just 128 bits, making it vulnerable to factoring attacks that expose the secret key. This weak key was used in Diffie-Hellman key exchanges that allowed each infected machine to have a unique key when communicating with another machine.

Posted on May 10, 2023 at 11:25 AMView Comments

PIPEDREAM Malware against Industrial Control Systems

Another nation-state malware, Russian in origin:

In the early stages of the war in Ukraine in 2022, PIPEDREAM, a known malware was quietly on the brink of wiping out a handful of critical U.S. electric and liquid natural gas sites. PIPEDREAM is an attack toolkit with unmatched and unprecedented capabilities developed for use against industrial control systems (ICSs).

The malware was built to manipulate the network communication protocols used by programmable logic controllers (PLCs) leveraged by two critical producers of PLCs for ICSs within the critical infrastructure sector, Schneider Electric and OMRON.

CISA advisory. Wired article.

Posted on May 9, 2023 at 11:20 AMView Comments

Sidebar photo of Bruce Schneier by Joe MacInnis.