Entries Tagged "history of cryptography"

Page 1 of 10

Military Cryptanalytics, Part III

The NSA has just declassified and released a redacted version of Military Cryptanalytics, Part III, by Lambros D. Callimahos, October 1977.

Parts I and II, by Lambros D. Callimahos and William F. Friedman, were released decades ago — I believe repeatedly, in increasingly unredacted form — and published by the late Wayne Griswold Barker’s Agean Park Press. I own them in hardcover.

Like Parts I and II, Part III is primarily concerned with pre-computer ciphers. At this point, the document only has historical interest. If there is any lesson for today, it’s that modern cryptanalysis is possible primarily because people make mistakes

The monograph took a while to become public. The cover page says that the initial FOIA request was made in July 2012: eight and a half years ago.

And there’s more books to come. Page 1 starts off:

This text constitutes the third of six basic texts on the science of cryptanalytics. The first two texts together have covered most of the necessary fundamentals of cryptanalytics; this and the remaining three texts will be devoted to more specialized and more advanced aspects of the science.

Presumably, volumes IV, V, and VI are still hidden inside the classified libraries of the NSA.

And from page ii:

Chapters IV-XI are revisions of seven of my monographs in the NSA Technical Literature Series, viz: Monograph No. 19, “The Cryptanalysis of Ciphertext and Plaintext Autokey Systems”; Monograph No. 20, “The Analysis of Systems Employing Long or Continuous Keys”; Monograph No. 21, “The Analysis of Cylindrical Cipher Devices and Strip Cipher Systems”; Monograph No. 22, “The Analysis of Systems Employing Geared Disk Cryptomechanisms”; Monograph No.23, “Fundamentals of Key Analysis”; Monograph No. 15, “An Introduction to Teleprinter Key Analysis”; and Monograph No. 18, “Ars Conjectandi: The Fundamentals of Cryptodiagnosis.”

This points to a whole series of still-classified monographs whose titles we do not even know.

EDITED TO ADD: I have been informed by a reliable source that Parts 4 through 6 were never completed. There may be fragments and notes, but no finished works.

Posted on January 4, 2021 at 2:34 PMView Comments

Enigma Machine Recovered from the Baltic Sea

Neat story:

German divers searching the Baltic Sea for discarded fishing nets have stumbled upon a rare Enigma cipher machine used by the Nazi military during World War Two which they believe was thrown overboard from a scuttled submarine.

Thinking they had discovered a typewriter entangled in a net on the seabed of Gelting Bay, underwater archaeologist Florian Huber quickly realised the historical significance of the find.

EDITED TO ADD: Slashdot thread.

Posted on December 4, 2020 at 9:18 AMView Comments

Another Story of Bad 1970s Encryption

This one is from the Netherlands. It seems to be clever cryptanalysis rather than a backdoor.

The Dutch intelligence service has been able to read encrypted communications from dozens of countries since the late 1970s thanks to a microchip, according to research by de Volkskrant on Thursday. The Netherlands could eavesdrop on confidential communication from countries such as Iran, Egypt and Saudi Arabia.

Philips, together with Siemens, built an encryption machine in the late 1970s. The device, the Aroflex, was used for secret communication between NATO allies. In addition, the companies also wanted to market the T1000CA, a commercial variant of the Aroflex with less strong cryptography.

The Volkskrant investigation shows that the Ministry of Foreign Affairs and the Marine Intelligence Service (MARID) cracked the cryptography of this device before it was launched. Philips helped the ministry and the intelligence service.

Normally it would take at least a month and a half to crack the T1000CA encryption. “Too long to get useful information from intercepted communication,” the newspaper writes. But MARID employees, together with Philips, succeeded in accelerating this 2.500 times by developing a special microchip.

The T1000CA was then sold to numerous non-NATO countries, including the Middle East and Asia. These countries could then be overheard by the Dutch intelligence services for years.

The 1970s was a decade of really bad commercial cryptography. DES, in 1975, was an improvement with its 56-bit key. I’m sure there are lots of these stories.

Here’s more about the Aroflex. And here’s what I think is the original Dutch story.

Posted on April 21, 2020 at 6:22 AMView Comments

Calculating the Benefits of the Advanced Encryption Standard

NIST has completed a study — it was published last year, but I just saw it recently — calculating the costs and benefits of the Advanced Encryption Standard.

From the conclusion:

The result of performing that operation on the series of cumulated benefits extrapolated for the 169 survey respondents finds that present value of benefits from today’s perspective is approximately $8.9 billion. On the other hand, the present value of NIST’s costs from today’s perspective is $127 million. Thus, the NPV from today’s perspective is $8,772,000,000; the B/C ratio is therefore 70.2/1; and a measure (explained in detail in Section 6.1) of the IRR for the alternative investment perspective is 31%; all are indicators of a substantial economic impact.

Extending the approach of looking back from 2017 to the larger national economy required the selection of economic sectors best represented by the 169 survey respondents. The economic sectors represented by ten or more survey respondents include the following: agriculture; construction; manufacturing; retail trade; transportation and warehousing; information; real estate rental and leasing; professional, scientific, and technical services; management services; waste management; educational services; and arts and entertainment. Looking at the present value of benefits and costs from 2017’s perspective for these economic sectors finds that the present value of benefits rises to approximately $251 billion while the present value of NIST’s costs from today’s perspective remains the same at $127 million. Therefore, the NPV of the benefits of the AES program to the national economy from today’s perspective is $250,473,200,000; the B/C ratio is roughly 1976/1; and the appropriate, alternative (explained in Section 6.1) IRR and investing proceeds at the social rate of return is 53.6%.

The report contains lots of facts and figures relevant to crypto policy debates, including the chaotic nature of crypto markets in the mid-1990s, the number of approved devices and libraries of various kinds since then, other standards that invoke AES, and so on.

There’s a lot to argue with about the methodology and the assumptions. I don’t know if I buy that the benefits of AES to the economy are in the billions of dollars, mostly because we in the cryptographic community would have come up with alternative algorithms to triple-DES that would have been accepted and used. Still, I like seeing this kind of analysis about security infrastructure. Security is an enabling technology; it doesn’t do anything by itself, but instead allows all sorts of things to be done. And I certainly agree that the benefits of a standardized encryption algorithm that we all trust and use outweigh the cost by orders of magnitude.

And this isn’t the first time NIST has conducted economic impact studies. It released a study of the economic impact of DES in 2001.

Posted on October 22, 2019 at 5:56 AMView Comments

1 2 3 10

Sidebar photo of Bruce Schneier by Joe MacInnis.