Parmesan Anti-Forgery Protection
The Guardian is reporting about microchips in wheels of Parmesan cheese as an anti-forgery measure.
Page 1 of 27
The Guardian is reporting about microchips in wheels of Parmesan cheese as an anti-forgery measure.
A bunch of networks, including US Government networks, have been hacked by the Chinese. The hackers used forged authentication tokens to access user email, using a stolen Microsoft Azure account consumer signing key. Congress wants answers. The phrase “negligent security practices” is being tossed about—and with good reason. Master signing keys are not supposed to be left around, waiting to be stolen.
Actually, two things went badly wrong here. The first is that Azure accepted an expired signing key, implying a vulnerability in whatever is supposed to check key validity. The second is that this key was supposed to remain in the the system’s Hardware Security Module—and not be in software. This implies a really serious breach of good security practice. The fact that Microsoft has not been forthcoming about the details of what happened tell me that the details are really bad.
I believe this all traces back to SolarWinds. In addition to Russia inserting malware into a SolarWinds update, China used a different SolarWinds vulnerability to break into networks. We know that Russia accessed Microsoft source code in that attack. I have heard from informed government officials that China used their SolarWinds vulnerability to break into Microsoft and access source code, including Azure’s.
I think we are grossly underestimating the long-term results of the SolarWinds attacks. That backdoored update was downloaded by over 14,000 networks worldwide. Organizations patched their networks, but not before Russia—and others—used the vulnerability to enter those networks. And once someone is in a network, it’s really hard to be sure that you’ve kicked them out.
Sophisticated threat actors are realizing that stealing source code of infrastructure providers, and then combing that code for vulnerabilities, is an excellent way to break into organizations who use those infrastructure providers. Attackers like Russia and China—and presumably the US as well—are prioritizing going after those providers.
EDITED TO ADD: Commentary:
This is from Microsoft’s explanation. The China attackers “acquired an inactive MSA consumer signing key and used it to forge authentication tokens for Azure AD enterprise and MSA consumer to access OWA and Outlook.com. All MSA keys active prior to the incident—including the actor-acquired MSA signing key—have been invalidated. Azure AD keys were not impacted. Though the key was intended only for MSA accounts, a validation issue allowed this key to be trusted for signing Azure AD tokens. The actor was able to obtain new access tokens by presenting one previously issued from this API due to a design flaw. This flaw in the GetAccessTokenForResourceAPI has since been fixed to only accept tokens issued from Azure AD or MSA respectively. The actor used these tokens to retrieve mail messages from the OWA API.”
It’s neither hard nor expensive:
Unlike password authentication, which requires a direct match between what is inputted and what’s stored in a database, fingerprint authentication determines a match using a reference threshold. As a result, a successful fingerprint brute-force attack requires only that an inputted image provides an acceptable approximation of an image in the fingerprint database. BrutePrint manipulates the false acceptance rate (FAR) to increase the threshold so fewer approximate images are accepted.
BrutePrint acts as an adversary in the middle between the fingerprint sensor and the trusted execution environment and exploits vulnerabilities that allow for unlimited guesses.
In a BrutePrint attack, the adversary removes the back cover of the device and attaches the $15 circuit board that has the fingerprint database loaded in the flash storage. The adversary then must convert the database into a fingerprint dictionary that’s formatted to work with the specific sensor used by the targeted phone. The process uses a neural-style transfer when converting the database into the usable dictionary. This process increases the chances of a match.
With the fingerprint dictionary in place, the adversary device is now in a position to input each entry into the targeted phone. Normally, a protection known as attempt limiting effectively locks a phone after a set number of failed login attempts are reached. BrutePrint can fully bypass this limit in the eight tested Android models, meaning the adversary device can try an infinite number of guesses. (On the two iPhones, the attack can expand the number of guesses to 15, three times higher than the five permitted.)
The bypasses result from exploiting what the researchers said are two zero-day vulnerabilities in the smartphone fingerprint authentication framework of virtually all smartphones. The vulnerabilities—one known as CAMF (cancel-after-match fail) and the other MAL (match-after-lock)—result from logic bugs in the authentication framework. CAMF exploits invalidate the checksum of transmitted fingerprint data, and MAL exploits infer matching results through side-channel attacks.
Depending on the model, the attack takes between 40 minutes and 14 hours.
Also:
The ability of BrutePrint to successfully hijack fingerprints stored on Android devices but not iPhones is the result of one simple design difference: iOS encrypts the data, and Android does not.
Jenny Blessing and Ross Anderson have evaluated the security of systems designed to allow the various Internet messaging platforms to interoperate with each other:
The Digital Markets Act ruled that users on different platforms should be able to exchange messages with each other. This opens up a real Pandora’s box. How will the networks manage keys, authenticate users, and moderate content? How much metadata will have to be shared, and how?
In our latest paper, One Protocol to Rule Them All? On Securing Interoperable Messaging, we explore the security tensions, the conflicts of interest, the usability traps, and the likely consequences for individual and institutional behaviour.
Interoperability will vastly increase the attack surface at every level in the stack from the cryptography up through usability to commercial incentives and the opportunities for government interference.
It’s a good idea in theory, but will likely result in the overall security being the worst of each platform’s security.
A reporter used an AI synthesis of his own voice to fool the voice authentication system for Lloyd’s Bank.
A group of Swiss researchers have published an impressive security analysis of Threema.
We provide an extensive cryptographic analysis of Threema, a Swiss-based encrypted messaging application with more than 10 million users and 7000 corporate customers. We present seven different attacks against the protocol in three different threat models. As one example, we present a cross-protocol attack which breaks authentication in Threema and which exploits the lack of proper key separation between different sub-protocols. As another, we demonstrate a compression-based side-channel attack that recovers users’ long-term private keys through observation of the size of Threema encrypted back-ups. We discuss remediations for our attacks and draw three wider lessons for developers of secure protocols.
From a news article:
Threema has more than 10 million users, which include the Swiss government, the Swiss army, German Chancellor Olaf Scholz, and other politicians in that country. Threema developers advertise it as a more secure alternative to Meta’s WhatsApp messenger. It’s among the top Android apps for a fee-based category in Switzerland, Germany, Austria, Canada, and Australia. The app uses a custom-designed encryption protocol in contravention of established cryptographic norms.
The company is performing the usual denials and deflections:
In a web post, Threema officials said the vulnerabilities applied to an old protocol that’s no longer in use. It also said the researchers were overselling their findings.
“While some of the findings presented in the paper may be interesting from a theoretical standpoint, none of them ever had any considerable real-world impact,” the post stated. “Most assume extensive and unrealistic prerequisites that would have far greater consequences than the respective finding itself.”
Left out of the statement is that the protocol the researchers analyzed is old because they disclosed the vulnerabilities to Threema, and Threema updated it.
This is a really interesting paper that discusses what the authors call the Decoupling Principle:
The idea is simple, yet previously not clearly articulated: to ensure privacy, information should be divided architecturally and institutionally such that each entity has only the information they need to perform their relevant function. Architectural decoupling entails splitting functionality for different fundamental actions in a system, such as decoupling authentication (proving who is allowed to use the network) from connectivity (establishing session state for communicating). Institutional decoupling entails splitting what information remains between non-colluding entities, such as distinct companies or network operators, or between a user and network peers. This decoupling makes service providers individually breach-proof, as they each have little or no sensitive data that can be lost to hackers. Put simply, the Decoupling Principle suggests always separating who you are from what you do.
Lots of interesting details in the paper.
This is an actual CAPTCHA I was shown when trying to log into PayPal.
As an actual human and not a bot, I had no idea how to answer. Is this a joke? (Seems not.) Is it a Magritte-like existential question? (It’s not a bicycle. It’s a drawing of a bicycle. Actually, it’s a photograph of a drawing of a bicycle. No, it’s really a computer image of a photograph of a drawing of a bicycle.) Am I overthinking this? (Definitely.) I stared at the screen, paralyzed, for way too long.
It’s probably the best CAPTCHA I have ever encountered; a computer would have just answered.
(In the end, I treated the drawing as a real bicycle and selected the appropriate squares…and it seemed to like that.)
Twitter is having intermittent problems with its two-factor authentication system:
Not all users are having problems receiving SMS authentication codes, and those who rely on an authenticator app or physical authentication token to secure their Twitter account may not have reason to test the mechanism. But users have been self-reporting issues on Twitter since the weekend, and WIRED confirmed that on at least some accounts, authentication texts are hours delayed or not coming at all. The meltdown comes less than two weeks after Twitter laid off about half of its workers, roughly 3,700 people. Since then, engineers, operations specialists, IT staff, and security teams have been stretched thin attempting to adapt Twitter’s offerings and build new features per new owner Elon Musk’s agenda.
On top of that, it seems that the system has a new vulnerability:
A researcher contacted Information Security Media Group on condition of anonymity to reveal that texting “STOP” to the Twitter verification service results in the service turning off SMS two-factor authentication.
“Your phone has been removed and SMS 2FA has been disabled from all accounts,” is the automated response.
The vulnerability, which ISMG verified, allows a hacker to spoof the registered phone number to disable two-factor authentication. That potentially exposes accounts to a password reset attack or account takeover through password stuffing.
This is not a good sign.
CISA is now pushing phishing-resistant multifactor authentication.
Roger Grimes has an excellent post reminding everyone that “phishing-resistant” is not “phishing proof,” and that everyone needs to stop pretending otherwise. His list of different attacks is particularly useful.
Sidebar photo of Bruce Schneier by Joe MacInnis.