Entries Tagged "side-channel attacks"

Page 1 of 7

Cloning Google Titan 2FA keys

This is a clever side-channel attack:

The cloning works by using a hot air gun and a scalpel to remove the plastic key casing and expose the NXP A700X chip, which acts as a secure element that stores the cryptographic secrets. Next, an attacker connects the chip to hardware and software that take measurements as the key is being used to authenticate on an existing account. Once the measurement-taking is finished, the attacker seals the chip in a new casing and returns it to the victim.

Extracting and later resealing the chip takes about four hours. It takes another six hours to take measurements for each account the attacker wants to hack. In other words, the process would take 10 hours to clone the key for a single account, 16 hours to clone a key for two accounts, and 22 hours for three accounts.

By observing the local electromagnetic radiations as the chip generates the digital signatures, the researchers exploit a side channel vulnerability in the NXP chip. The exploit allows an attacker to obtain the long-term elliptic curve digital signal algorithm private key designated for a given account. With the crypto key in hand, the attacker can then create her own key, which will work for each account she targeted.

The attack isn’t free, but it’s not expensive either:

A hacker would first have to steal a target’s account password and also gain covert possession of the physical key for as many as 10 hours. The cloning also requires up to $12,000 worth of equipment and custom software, plus an advanced background in electrical engineering and cryptography. That means the key cloning — ­were it ever to happen in the wild — ­would likely be done only by a nation-state pursuing its highest-value targets.

That last line about “nation-state pursuing its highest-value targets” is just not true. There are many other situations where this attack is feasible.

Note that the attack isn’t against the Google system specifically. It exploits a side-channel attack in the NXP chip. Which means that other systems are probably vulnerable:

While the researchers performed their attack on the Google Titan, they believe that other hardware that uses the A700X, or chips based on the A700X, may also be vulnerable. If true, that would include Yubico’s YubiKey NEO and several 2FA keys made by Feitian.

Posted on January 12, 2021 at 6:16 AMView Comments

Eavesdropping on Phone Taps from Voice Assistants

The microphones on voice assistants are very sensitive, and can snoop on all sorts of data:

In Hey Alexa what did I just type? we show that when sitting up to half a meter away, a voice assistant can still hear the taps you make on your phone, even in presence of noise. Modern voice assistants have two to seven microphones, so they can do directional localisation, just as human ears do, but with greater sensitivity. We assess the risk and show that a lot more work is needed to understand the privacy implications of the always-on microphones that are increasingly infesting our work spaces and our homes.

From the paper:

Abstract: Voice assistants are now ubiquitous and listen in on our everyday lives. Ever since they became commercially available, privacy advocates worried that the data they collect can be abused: might private conversations be extracted by third parties? In this paper we show that privacy threats go beyond spoken conversations and include sensitive data typed on nearby smartphones. Using two different smartphones and a tablet we demonstrate that the attacker can extract PIN codes and text messages from recordings collected by a voice assistant located up to half a meter away. This shows that remote keyboard-inference attacks are not limited to physical keyboards but extend to virtual keyboards too. As our homes become full of always-on microphones, we need to work through the implications.

Posted on December 22, 2020 at 10:21 AMView Comments

Manipulating Systems Using Remote Lasers

Many systems are vulnerable:

Researchers at the time said that they were able to launch inaudible commands by shining lasers — from as far as 360 feet — at the microphones on various popular voice assistants, including Amazon Alexa, Apple Siri, Facebook Portal, and Google Assistant.

[…]

They broadened their research to show how light can be used to manipulate a wider range of digital assistants — including Amazon Echo 3 — but also sensing systems found in medical devices, autonomous vehicles, industrial systems and even space systems.

The researchers also delved into how the ecosystem of devices connected to voice-activated assistants — such as smart-locks, home switches and even cars — also fail under common security vulnerabilities that can make these attacks even more dangerous. The paper shows how using a digital assistant as the gateway can allow attackers to take control of other devices in the home: Once an attacker takes control of a digital assistant, he or she can have the run of any device connected to it that also responds to voice commands. Indeed, these attacks can get even more interesting if these devices are connected to other aspects of the smart home, such as smart door locks, garage doors, computers and even people’s cars, they said.

Another article. The researchers will present their findings at Black Hat Europe — which, of course, will be happening virtually — on December 10.

Posted on December 1, 2020 at 6:13 AMView Comments

Determining What Video Conference Participants Are Typing from Watching Shoulder Movements

Accuracy isn’t great, but that it can be done at all is impressive.

Murtuza Jadiwala, a computer science professor heading the research project, said his team was able to identify the contents of texts by examining body movement of the participants. Specifically, they focused on the movement of their shoulders and arms to extrapolate the actions of their fingers as they typed.

Given the widespread use of high-resolution web cams during conference calls, Jadiwala was able to record and analyze slight pixel shifts around users’ shoulders to determine if they were moving left or right, forward or backward. He then created a software program that linked the movements to a list of commonly used words. He says the “text inference framework that uses the keystrokes detected from the video … predict[s] words that were most likely typed by the target user. We then comprehensively evaluate[d] both the keystroke/typing detection and text inference frameworks using data collected from a large number of participants.”

In a controlled setting, with specific chairs, keyboards and webcam, Jadiwala said he achieved an accuracy rate of 75 percent. However, in uncontrolled environments, accuracy dropped to only one out of every five words being correctly identified.

Other factors contribute to lower accuracy levels, he said, including whether long sleeve or short sleeve shirts were worn, and the length of a user’s hair. With long hair obstructing a clear view of the shoulders, accuracy plummeted.

Posted on November 4, 2020 at 10:28 AMView Comments

Eavesdropping on Sound Using Variations in Light Bulbs

New research is able to recover sound waves in a room by observing minute changes in the room’s light bulbs. This technique works from a distance, even from a building across the street through a window.

Details:

In an experiment using three different telescopes with different lens diameters from a distance of 25 meters (a little over 82 feet) the researchers were successfully able to capture sound being played in a remote room, including The Beatles’ Let It Be, which was distinguishable enough for Shazam to recognize it, and a speech from President Trump that Google’s speech recognition API could successfully transcribe. With more powerful telescopes and a more sensitive analog-to-digital converter, the researchers believe the eavesdropping distances could be even greater.

It’s not expensive: less than $1,000 worth of equipment is required. And unlike other techniques like bouncing a laser off the window and measuring the vibrations, it’s completely passive.

News articles.

Posted on June 16, 2020 at 10:20 AMView Comments

Another Intel Speculative Execution Vulnerability

Remember Spectre and Meltdown? Back in early 2018, I wrote:

Spectre and Meltdown are pretty catastrophic vulnerabilities, but they only affect the confidentiality of data. Now that they — and the research into the Intel ME vulnerability — have shown researchers where to look, more is coming — and what they’ll find will be worse than either Spectre or Meltdown. There will be vulnerabilities that will allow attackers to manipulate or delete data across processes, potentially fatal in the computers controlling our cars or implanted medical devices. These will be similarly impossible to fix, and the only strategy will be to throw our devices away and buy new ones.

That has turned out to be true. Here’s a new vulnerability:

On Tuesday, two separate academic teams disclosed two new and distinctive exploits that pierce Intel’s Software Guard eXtension, by far the most sensitive region of the company’s processors.

[…]

The new SGX attacks are known as SGAxe and CrossTalk. Both break into the fortified CPU region using separate side-channel attacks, a class of hack that infers sensitive data by measuring timing differences, power consumption, electromagnetic radiation, sound, or other information from the systems that store it. The assumptions for both attacks are roughly the same. An attacker has already broken the security of the target machine through a software exploit or a malicious virtual machine that compromises the integrity of the system. While that’s a tall bar, it’s precisely the scenario that SGX is supposed to defend against.

Another news article.

Posted on June 11, 2020 at 6:40 AMView Comments

Hacking Voice Assistants with Ultrasonic Waves

I previously wrote about hacking voice assistants with lasers. Turns you can do much the same thing with ultrasonic waves:

Voice assistants — the demo targeted Siri, Google Assistant, and Bixby — are designed to respond when they detect the owner’s voice after noticing a trigger phrase such as ‘Ok, Google’.

Ultimately, commands are just sound waves, which other researchers have already shown can be emulated using ultrasonic waves which humans can’t hear, providing an attacker has a line of sight on the device and the distance is short.

What SurfingAttack adds to this is the ability to send the ultrasonic commands through a solid glass or wood table on which the smartphone was sitting using a circular piezoelectric disc connected to its underside.

Although the distance was only 43cm (17 inches), hiding the disc under a surface represents a more plausible, easier-to-conceal attack method than previous techniques.

Research paper. Demonstration video.

Posted on March 23, 2020 at 6:19 AMView Comments

Another Side Channel in Intel Chips

Not that serious, but interesting:

In late 2011, Intel introduced a performance enhancement to its line of server processors that allowed network cards and other peripherals to connect directly to a CPU’s last-level cache, rather than following the standard (and significantly longer) path through the server’s main memory. By avoiding system memory, Intel’s DDIO­short for Data-Direct I/O­increased input/output bandwidth and reduced latency and power consumption.

Now, researchers are warning that, in certain scenarios, attackers can abuse DDIO to obtain keystrokes and possibly other types of sensitive data that flow through the memory of vulnerable servers. The most serious form of attack can take place in data centers and cloud environments that have both DDIO and remote direct memory access enabled to allow servers to exchange data. A server leased by a malicious hacker could abuse the vulnerability to attack other customers. To prove their point, the researchers devised an attack that allows a server to steal keystrokes typed into the protected SSH (or secure shell session) established between another server and an application server.

Posted on September 16, 2019 at 6:39 AMView Comments

Recovering Smartphone Typing from Microphone Sounds

Yet another side-channel attack on smartphones: “Hearing your touch: A new acoustic side channel on smartphones,” by Ilia Shumailov, Laurent Simon, Jeff Yan, and Ross Anderson.

Abstract: We present the first acoustic side-channel attack that recovers what users type on the virtual keyboard of their touch-screen smartphone or tablet. When a user taps the screen with a finger, the tap generates a sound wave that propagates on the screen surface and in the air. We found the device’s microphone(s) can recover this wave and “hear” the finger’s touch, and the wave’s distortions are characteristic of the tap’s location on the screen. Hence, by recording audio through the built-in microphone(s), a malicious app can infer text as the user enters it on their device. We evaluate the effectiveness of the attack with 45 participants in a real-world environment on an Android tablet and an Android smartphone. For the tablet, we recover 61% of 200 4-digit PIN-codes within 20 attempts, even if the model is not trained with the victim’s data. For the smartphone, we recover 9 words of size 7-13 letters with 50 attempts in a common side-channel attack benchmark. Our results suggest that it not always sufficient to rely on isolation mechanisms such as TrustZone to protect user input. We propose and discuss hardware, operating-system and application-level mechanisms to block this attack more effectively. Mobile devices may need a richer capability model, a more user-friendly notification system for sensor usage and a more thorough evaluation of the information leaked by the underlying hardware.

Blog post.

Posted on April 1, 2019 at 9:44 AMView Comments

1 2 3 7

Sidebar photo of Bruce Schneier by Joe MacInnis.