Entries Tagged "China"

Page 1 of 13

Chinese COVID-19 Disinformation Campaign

The New York Times is reporting on state-sponsored disinformation campaigns coming out of China:

Since that wave of panic, United States intelligence agencies have assessed that Chinese operatives helped push the messages across platforms, according to six American officials, who spoke on the condition of anonymity to publicly discuss intelligence matters. The amplification techniques are alarming to officials because the disinformation showed up as texts on many Americans’ cellphones, a tactic that several of the officials said they had not seen before.

Posted on April 23, 2020 at 12:01 PMView Comments

Facial Recognition for People Wearing Masks

The Chinese facial recognition company Hanwang claims it can recognize people wearing masks:

The company now says its masked facial recognition program has reached 95 percent accuracy in lab tests, and even claims that it is more accurate in real life, where its cameras take multiple photos of a person if the first attempt to identify them fails.

[…]

Counter-intuitively, training facial recognition algorithms to recognize masked faces involves throwing data away. A team at the University of Bradford published a study last year showing they could train a facial recognition program to accurately recognize half-faces by deleting parts of the photos they used to train the software.

When a facial recognition program tries to recognize a person, it takes a photo of the person to be identified, and reduces it down to a bundle, or vector, of numbers that describes the relative positions of features on the face.

[…]

Hanwang’s system works for masked faces by trying to guess what all the faces in its existing database of photographs would look like if they were masked.

Posted on March 25, 2020 at 6:33 AMView Comments

Emergency Surveillance During COVID-19 Crisis

Israel is using emergency surveillance powers to track people who may have COVID-19, joining China and Iran in using mass surveillance in this way. I believe pressure will increase to leverage existing corporate surveillance infrastructure for these purposes in the US and other countries. With that in mind, the EFF has some good thinking on how to balance public safety with civil liberties:

Thus, any data collection and digital monitoring of potential carriers of COVID-19 should take into consideration and commit to these principles:

  • Privacy intrusions must be necessary and proportionate. A program that collects, en masse, identifiable information about people must be scientifically justified and deemed necessary by public health experts for the purpose of containment. And that data processing must be proportionate to the need. For example, maintenance of 10 years of travel history of all people would not be proportionate to the need to contain a disease like COVID-19, which has a two-week incubation period.
  • Data collection based on science, not bias. Given the global scope of communicable diseases, there is historical precedent for improper government containment efforts driven by bias based on nationality, ethnicity, religion, and race­ — rather than facts about a particular individual’s actual likelihood of contracting the virus, such as their travel history or contact with potentially infected people. Today, we must ensure that any automated data systems used to contain COVID-19 do not erroneously identify members of specific demographic groups as particularly susceptible to infection.
  • Expiration. As in other major emergencies in the past, there is a hazard that the data surveillance infrastructure we build to contain COVID-19 may long outlive the crisis it was intended to address. The government and its corporate cooperators must roll back any invasive programs created in the name of public health after crisis has been contained.
  • Transparency. Any government use of “big data” to track virus spread must be clearly and quickly explained to the public. This includes publication of detailed information about the information being gathered, the retention period for the information, the tools used to process that information, the ways these tools guide public health decisions, and whether these tools have had any positive or negative outcomes.
  • Due Process. If the government seeks to limit a person’s rights based on this “big data” surveillance (for example, to quarantine them based on the system’s conclusions about their relationships or travel), then the person must have the opportunity to timely and fairly challenge these conclusions and limits.

Posted on March 20, 2020 at 6:25 AMView Comments

US Department of Interior Grounding All Drones

The Department of Interior is grounding all non-emergency drones due to security concerns:

The order comes amid a spate of warnings and bans at multiple government agencies, including the Department of Defense, about possible vulnerabilities in Chinese-made drone systems that could be allowing Beijing to conduct espionage. The Army banned the use of Chinese-made DJI drones three years ago following warnings from the Navy about “highly vulnerable” drone systems.

One memo drafted by the Navy & Marine Corps Small Tactical Unmanned Aircraft Systems Program Manager has warned “images, video and flight records could be uploaded to unsecured servers in other countries via live streaming.” The Navy has also warned adversaries may view video and metadata from drone systems even though the air vehicle is encrypted. The Department of Homeland Security previously warned the private sector their data may be pilfered off if they use commercial drone systems made in China.

I’m actually not that worried about this risk. Data moving across the Internet is obvious — it’s too easy for a country that tries this to get caught. I am much more worried about remote kill switches in the equipment.

Posted on January 31, 2020 at 6:46 AMView Comments

Chinese Hackers Bypassing Two-Factor Authentication

Interesting story of how a Chinese state-sponsored hacking group is bypassing the RSA SecurID two-factor authentication system.

How they did it remains unclear; although, the Fox-IT team has their theory. They said APT20 stole an RSA SecurID software token from a hacked system, which the Chinese actor then used on its computers to generate valid one-time codes and bypass 2FA at will.

Normally, this wouldn’t be possible. To use one of these software tokens, the user would need to connect a physical (hardware) device to their computer. The device and the software token would then generate a valid 2FA code. If the device was missing, the RSA SecureID software would generate an error.

The Fox-IT team explains how hackers might have gone around this issue:

The software token is generated for a specific system, but of course this system specific value could easily be retrieved by the actor when having access to the system of the victim.

As it turns out, the actor does not actually need to go through the trouble of obtaining the victim’s system specific value, because this specific value is only checked when importing the SecurID Token Seed, and has no relation to the seed used to generate actual 2-factor tokens. This means the actor can actually simply patch the check which verifies if the imported soft token was generated for this system, and does not need to bother with stealing the system specific value at all.

In short, all the actor has to do to make use of the 2 factor authentication codes is to steal an RSA SecurID Software Token and to patch 1 instruction, which results in the generation of valid tokens.

Posted on December 26, 2019 at 6:19 AMView Comments

GPS Manipulation

Long article on the manipulation of GPS in Shanghai. It seems not to be some Chinese military program, but ships who are stealing sand.

The Shanghai “crop circles,” which somehow spoof each vessel to a different false location, are something new. “I’m still puzzled by this,” says Humphreys. “I can’t get it to work out in the math. It’s an interesting mystery.” It’s also a mystery that raises the possibility of potentially deadly accidents.

“Captains and pilots have become very dependent on GPS, because it has been historically very reliable,” says Humphreys. “If it claims to be working, they rely on it and don’t double-check it all that much.”

On June 5 this year, the Run 5678, a river cargo ship, tried to overtake a smaller craft on the Huangpu, about five miles south of the Bund. The Run avoided the small ship but plowed right into the New Glory (Chinese name: Tong Yang Jingrui), a freighter heading north.

Boing Boing article.

Posted on November 21, 2019 at 6:26 AMView Comments

Supply-Chain Security and Trust

The United States government’s continuing disagreement with the Chinese company Huawei underscores a much larger problem with computer technologies in general: We have no choice but to trust them completely, and it’s impossible to verify that they’re trustworthy. Solving this problem ­ which is increasingly a national security issue ­ will require us to both make major policy changes and invent new technologies.

The Huawei problem is simple to explain. The company is based in China and subject to the rules and dictates of the Chinese government. The government could require Huawei to install back doors into the 5G routers it sells abroad, allowing the government to eavesdrop on communications or ­– even worse ­– take control of the routers during wartime. Since the United States will rely on those routers for all of its communications, we become vulnerable by building our 5G backbone on Huawei equipment.

It’s obvious that we can’t trust computer equipment from a country we don’t trust, but the problem is much more pervasive than that. The computers and smartphones you use are not built in the United States. Their chips aren’t made in the United States. The engineers who design and program them come from over a hundred countries. Thousands of people have the opportunity, acting alone, to slip a back door into the final product.

There’s more. Open-source software packages are increasingly targeted by groups installing back doors. Fake apps in the Google Play store illustrate vulnerabilities in our software distribution systems. The NotPetya worm was distributed by a fraudulent update to a popular Ukranian accounting package, illustrating vulnerabilities in our update systems. Hardware chips can be back-doored at the point of fabrication, even if the design is secure. The National Security Agency exploited the shipping process to subvert Cisco routers intended for the Syrian telephone company. The overall problem is that of supply-chain security, because every part of the supply chain can be attacked.

And while nation-state threats like China and Huawei ­– or Russia and the antivirus company Kaspersky a couple of years earlier ­– make the news, many of the vulnerabilities I described above are being exploited by cybercriminals.

Policy solutions involve forcing companies to open their technical details to inspection, including the source code of their products and the designs of their hardware. Huawei and Kaspersky have offered this sort of openness as a way to demonstrate that they are trustworthy. This is not a worthless gesture, and it helps, but it’s not nearly enough. Too many back doors can evade this kind of inspection.

Technical solutions fall into two basic categories, both currently beyond our reach. One is to improve the technical inspection processes for products whose designers provide source code and hardware design specifications, and for products that arrive without any transparency information at all. In both cases, we want to verify that the end product is secure and free of back doors. Sometimes we can do this for some classes of back doors: We can inspect source code ­ this is how a Linux back door was discovered and removed in 2003 ­ or the hardware design, which becomes a cleverness battle between attacker and defender.

This is an area that needs more research. Today, the advantage goes to the attacker. It’s hard to ensure that the hardware and software you examine is the same as what you get, and it’s too easy to create back doors that slip past inspection. And while we can find and correct some of these supply-chain attacks, we won’t find them all. It’s a needle-in-a-haystack problem, except we don’t know what a needle looks like. We need technologies, possibly based on artificial intelligence, that can inspect systems more thoroughly and faster than humans can do. We need them quickly.

The other solution is to build a secure system, even though any of its parts can be subverted. This is what the former Deputy Director of National Intelligence Sue Gordon meant in April when she said about 5G, “You have to presume a dirty network.” Or more precisely, can we solve this by building trustworthy systems out of untrustworthy parts?

It sounds ridiculous on its face, but the Internet itself was a solution to a similar problem: a reliable network built out of unreliable parts. This was the result of decades of research. That research continues today, and it’s how we can have highly resilient distributed systems like Google’s network even though none of the individual components are particularly good. It’s also the philosophy behind much of the cybersecurity industry today: systems watching one another, looking for vulnerabilities and signs of attack.

Security is a lot harder than reliability. We don’t even really know how to build secure systems out of secure parts, let alone out of parts and processes that we can’t trust and that are almost certainly being subverted by governments and criminals around the world. Current security technologies are nowhere near good enough, though, to defend against these increasingly sophisticated attacks. So while this is an important part of the solution, and something we need to focus research on, it’s not going to solve our near-term problems.

At the same time, all of these problems are getting worse as computers and networks become more critical to personal and national security. The value of 5G isn’t for you to watch videos faster; it’s for things talking to things without bothering you. These things ­– cars, appliances, power plants, smart cities –­ increasingly affect the world in a direct physical manner. They’re increasingly autonomous, using A.I. and other technologies to make decisions without human intervention. The risk from Chinese back doors into our networks and computers isn’t that their government will listen in on our conversations; it’s that they’ll turn the power off or make all the cars crash into one another.

All of this doesn’t leave us with many options for today’s supply-chain problems. We still have to presume a dirty network ­– as well as back-doored computers and phones — and we can clean up only a fraction of the vulnerabilities. Citing the lack of non-Chinese alternatives for some of the communications hardware, already some are calling to abandon attempts to secure 5G from Chinese back doors and work on having secure American or European alternatives for 6G networks. It’s not nearly enough to solve the problem, but it’s a start.

Perhaps these half-solutions are the best we can do. Live with the problem today, and accelerate research to solve the problem for the future. These are research projects on a par with the Internet itself. They need government funding, like the Internet itself. And, also like the Internet, they’re critical to national security.

Critically, these systems must be as secure as we can make them. As former FCC Commissioner Tom Wheeler has explained, there’s a lot more to securing 5G than keeping Chinese equipment out of the network. This means we have to give up the fantasy that law enforcement can have back doors to aid criminal investigations without also weakening these systems. The world uses one network, and there can only be one answer: Either everyone gets to spy, or no one gets to spy. And as these systems become more critical to national security, a network secure from all eavesdroppers becomes more important.

This essay previously appeared in the New York Times.

Posted on September 30, 2019 at 6:36 AMView Comments

On Chinese "Spy Trains"

The trade war with China has reached a new industry: subway cars. Congress is considering legislation that would prevent the world’s largest train maker, the Chinese-owned CRRC Corporation, from competing on new contracts in the United States.

Part of the reasoning behind this legislation is economic, and stems from worries about Chinese industries undercutting the competition and dominating key global industries. But another part involves fears about national security. News articles talk about “spy trains,” and the possibility that the train cars might surreptitiously monitor their passengers’ faces, movements, conversations or phone calls.

This is a complicated topic. There is definitely a national security risk in buying computer infrastructure from a country you don’t trust. That’s why there is so much worry about Chinese-made equipment for the new 5G wireless networks.

It’s also why the United States has blocked the cybersecurity company Kaspersky from selling its Russian-made antivirus products to US government agencies. Meanwhile, the chairman of China’s technology giant Huawei has pointed to NSA spying disclosed by Edward Snowden as a reason to mistrust US technology companies.

The reason these threats are so real is that it’s not difficult to hide surveillance or control infrastructure in computer components, and if they’re not turned on, they’re very difficult to find.

Like every other piece of modern machinery, modern train cars are filled with computers, and while it’s certainly possible to produce a subway car with enough surveillance apparatus to turn it into a “spy train,” in practice it doesn’t make much sense. The risk of discovery is too great, and the payoff would be too low. Like the United States, China is more likely to try to get data from the US communications infrastructure, or from the large Internet companies that already collect data on our every move as part of their business model.

While it’s unlikely that China would bother spying on commuters using subway cars, it would be much less surprising if a tech company offered free Internet on subways in exchange for surveillance and data collection. Or if the NSA used those corporate systems for their own surveillance purposes (just as the agency has spied on in-flight cell phone calls, according to an investigation by the Intercept and Le Monde, citing documents provided by Edward Snowden). That’s an easier, and more fruitful, attack path.

We have credible reports that the Chinese hacked Gmail around 2010, and there are ongoing concerns about both censorship and surveillance by the Chinese social-networking company TikTok. (TikTok’s parent company has told the Washington Post that the app doesn’t send American users’ info back to Beijing, and that the Chinese government does not influence the app’s use in the United States.)

Even so, these examples illustrate an important point: there’s no escaping the technology of inevitable surveillance. You have little choice but to rely on the companies that build your computers and write your software, whether in your smartphones, your 5G wireless infrastructure, or your subway cars. And those systems are so complicated that they can be secretly programmed to operate against your interests.

Last year, Le Monde reported that the Chinese government bugged the computer network of the headquarters of the African Union in Addis Ababa. China had built and outfitted the organization’s new headquarters as a foreign aid gift, reportedly secretly configuring the network to send copies of confidential data to Shanghai every night between 2012 and 2017. China denied having done so, of course.

If there’s any lesson from all of this, it’s that everybody spies using the Internet. The United States does it. Our allies do it. Our enemies do it. Many countries do it to each other, with their success largely dependent on how sophisticated their tech industries are.

China dominates the subway car manufacturing industry because of its low prices­ — the same reason it dominates the 5G hardware industry. Whether these low prices are because the companies are more efficient than their competitors or because they’re being unfairly subsidized by the Chinese government is a matter to be determined at trade negotiations.

Finally, Americans must understand that higher prices are an inevitable result of banning cheaper tech products from China.

We might willingly pay the higher prices because we want domestic control of our telecommunications infrastructure. We might willingly pay more because of some protectionist belief that global trade is somehow bad. But we need to make these decisions to protect ourselves deliberately and rationally, recognizing both the risks and the costs. And while I’m worried about our 5G infrastructure built using Chinese hardware, I’m not worried about our subway cars.

This essay originally appeared on CNN.com.

EDITED TO ADD: I had a lot of trouble with CNN’s legal department with this essay. They were very reluctant to call out the US and its allies for similar behavior, and spent a lot more time adding caveats to statements that I didn’t think needed them. They wouldn’t let me link to this Intercept article talking about US, French, and German infiltration of supply chains, or even the NSA document from the Snowden archives that proved the statements.

Posted on September 26, 2019 at 6:21 AMView Comments

Details of the Cloud Hopper Attacks

Reuters has a long article on the Chinese government APT attack called Cloud Hopper. It was much bigger than originally reported.

The hacking campaign, known as “Cloud Hopper,” was the subject of a U.S. indictment in December that accused two Chinese nationals of identity theft and fraud. Prosecutors described an elaborate operation that victimized multiple Western companies but stopped short of naming them. A Reuters report at the time identified two: Hewlett Packard Enterprise and IBM.

Yet the campaign ensnared at least six more major technology firms, touching five of the world’s 10 biggest tech service providers.

Also compromised by Cloud Hopper, Reuters has found: Fujitsu, Tata Consultancy Services, NTT Data, Dimension Data, Computer Sciences Corporation and DXC Technology. HPE spun-off its services arm in a merger with Computer Sciences Corporation in 2017 to create DXC.

Waves of hacking victims emanate from those six plus HPE and IBM: their clients. Ericsson, which competes with Chinese firms in the strategically critical mobile telecoms business, is one. Others include travel reservation system Sabre, the American leader in managing plane bookings, and the largest shipbuilder for the U.S. Navy, Huntington Ingalls Industries, which builds America’s nuclear submarines at a Virginia shipyard.

Posted on July 10, 2019 at 5:51 AMView Comments

1 2 3 13

Sidebar photo of Bruce Schneier by Joe MacInnis.