Entries Tagged "Internet of Things"

Page 1 of 13

Security Vulnerability in Saflok’s RFID-Based Keycard Locks

It’s pretty devastating:

Today, Ian Carroll, Lennert Wouters, and a team of other security researchers are revealing a hotel keycard hacking technique they call Unsaflok. The technique is a collection of security vulnerabilities that would allow a hacker to almost instantly open several models of Saflok-brand RFID-based keycard locks sold by the Swiss lock maker Dormakaba. The Saflok systems are installed on 3 million doors worldwide, inside 13,000 properties in 131 countries. By exploiting weaknesses in both Dormakaba’s encryption and the underlying RFID system Dormakaba uses, known as MIFARE Classic, Carroll and Wouters have demonstrated just how easily they can open a Saflok keycard lock. Their technique starts with obtaining any keycard from a target hotel—say, by booking a room there or grabbing a keycard out of a box of used ones—then reading a certain code from that card with a $300 RFID read-write device, and finally writing two keycards of their own. When they merely tap those two cards on a lock, the first rewrites a certain piece of the lock’s data, and the second opens it.

Dormakaba says that it’s been working since early last year to make hotels that use Saflok aware of their security flaws and to help them fix or replace the vulnerable locks. For many of the Saflok systems sold in the last eight years, there’s no hardware replacement necessary for each individual lock. Instead, hotels will only need to update or replace the front desk management system and have a technician carry out a relatively quick reprogramming of each lock, door by door. Wouters and Carroll say they were nonetheless told by Dormakaba that, as of this month, only 36 percent of installed Safloks have been updated. Given that the locks aren’t connected to the internet and some older locks will still need a hardware upgrade, they say the full fix will still likely take months longer to roll out, at the very least. Some older installations may take years.

If ever. My guess is that for many locks, this is a permanent vulnerability.

Posted on March 27, 2024 at 7:01 AMView Comments

The Insecurity of Video Doorbells

Consumer Reports has analyzed a bunch of popular Internet-connected video doorbells. Their security is terrible.

First, these doorbells expose your home IP address and WiFi network name to the internet without encryption, potentially opening your home network to online criminals.

[…]

Anyone who can physically access one of the doorbells can take over the device—no tools or fancy hacking skills needed.

Posted on March 5, 2024 at 7:05 AMView Comments

On IoT Devices and Software Liability

New law journal article:

Smart Device Manufacturer Liability and Redress for Third-Party Cyberattack Victims

Abstract: Smart devices are used to facilitate cyberattacks against both their users and third parties. While users are generally able to seek redress following a cyberattack via data protection legislation, there is no equivalent pathway available to third-party victims who suffer harm at the hands of a cyberattacker. Given how these cyberattacks are usually conducted by exploiting a publicly known and yet un-remediated bug in the smart device’s code, this lacuna is unreasonable. This paper scrutinises recent judgments from both the Supreme Court of the United Kingdom and the Supreme Court of the Republic of Ireland to ascertain whether these rulings pave the way for third-party victims to pursue negligence claims against the manufacturers of smart devices. From this analysis, a narrow pathway, which outlines how given a limited set of circumstances, a duty of care can be established between the third-party victim and the manufacturer of the smart device is proposed.

Posted on January 12, 2024 at 7:03 AMView Comments

Trusted and Trustworthy AI

In 2016, I wrote about an Internet that affected the world in a direct, physical manner. It was connected to your smartphone. It had sensors like cameras and thermostats. It had actuators: Drones, autonomous cars. And it had smarts in the middle, using sensor data to figure out what to do and then actually do it. This was the Internet of Things (IoT).

The classical definition of a robot is something that senses, thinks, and acts—that’s today’s Internet. We’ve been building a world-sized robot without even realizing it.

In 2023, we upgraded the “thinking” part with large-language models (LLMs) like GPT. ChatGPT both surprised and amazed the world with its ability to understand human language and generate credible, on-topic, humanlike responses. But what these are really good at is interacting with systems formerly designed for humans. Their accuracy will get better, and they will be used to replace actual humans.

In 2024, we’re going to start connecting those LLMs and other AI systems to both sensors and actuators. In other words, they will be connected to the larger world, through APIs. They will receive direct inputs from our environment, in all the forms I thought about in 2016. And they will increasingly control our environment, through IoT devices and beyond.

It will start small: Summarizing emails and writing limited responses. Arguing with customer service—on chat—for service changes and refunds. Making travel reservations.

But these AIs will interact with the physical world as well, first controlling robots and then having those robots as part of them. Your AI-driven thermostat will turn the heat and air conditioning on based also on who’s in what room, their preferences, and where they are likely to go next. It will negotiate with the power company for the cheapest rates by scheduling usage of high-energy appliances or car recharging.

This is the easy stuff. The real changes will happen when these AIs group together in a larger intelligence: A vast network of power generation and power consumption with each building just a node, like an ant colony or a human army.

Future industrial-control systems will include traditional factory robots, as well as AI systems to schedule their operation. It will automatically order supplies, as well as coordinate final product shipping. The AI will manage its own finances, interacting with other systems in the banking world. It will call on humans as needed: to repair individual subsystems or to do things too specialized for the robots.

Consider driverless cars. Individual vehicles have sensors, of course, but they also make use of sensors embedded in the roads and on poles. The real processing is done in the cloud, by a centralized system that is piloting all the vehicles. This allows individual cars to coordinate their movement for more efficiency: braking in synchronization, for example.

These are robots, but not the sort familiar from movies and television. We think of robots as discrete metal objects, with sensors and actuators on their surface, and processing logic inside. But our new robots are different. Their sensors and actuators are distributed in the environment. Their processing is somewhere else. They’re a network of individual units that become a robot only in aggregate.

This turns our notion of security on its head. If massive, decentralized AIs run everything, then who controls those AIs matters a lot. It’s as if all the executive assistants or lawyers in an industry worked for the same agency. An AI that is both trusted and trustworthy will become a critical requirement.

This future requires us to see ourselves less as individuals, and more as parts of larger systems. It’s AI as nature, as Gaia—everything as one system. It’s a future more aligned with the Buddhist philosophy of interconnectedness than Western ideas of individuality. (And also with science-fiction dystopias, like Skynet from the Terminator movies.) It will require a rethinking of much of our assumptions about governance and economy. That’s not going to happen soon, but in 2024 we will see the first steps along that path.

This essay previously appeared in Wired.

Posted on December 15, 2023 at 7:01 AMView Comments

Digital License Plates

California just legalized digital license plates, which seems like a solution without a problem.

The Rplate can reportedly function in extreme temperatures, has some customization features, and is managed via Bluetooth using a smartphone app. Rplates are also equipped with an LTE antenna, which can be used to push updates, change the plate if the vehicle is reported stolen or lost, and notify vehicle owners if their car may have been stolen.

Perhaps most importantly to the average car owner, Reviver said Rplate owners can renew their registration online through the Reviver mobile app.

That’s it?

Right now, an Rplate for a personal vehicle (the battery version) runs to $19.95 a month for 48 months, which will total $975.60 if kept for the full term. If opting to pay a year at a time, the price is $215.40 a year for the same four-year period, totaling $861.60. Wired plates for commercial vehicles run $24.95 for 48 months, and $275.40 if paid yearly.

That’s a lot to pay for the luxury of not having to find an envelope and stamp.

Plus, the privacy risks:

Privacy risks are an obvious concern when thinking about strapping an always-connected digital device to a car, but the California law has taken steps that may address some of those concerns.

“The bill would generally prohibit an alternative device [i.e. digital plate] from being equipped with GPS or other vehicle location tracking capability,” California’s legislative digest said of the new law. Commercial fleets are exempt from the rule, unsurprisingly.

More important are the security risks. Do we think for a minute that your digital license plate is secure from denial-of-service attacks, or number swapping attacks, or whatever new attacks will be dreamt up? Seems like a piece of stamped metal is the most secure option.

Posted on October 13, 2022 at 6:19 AMView Comments

New Report on IoT Security

The Atlantic Council has published a report on securing the Internet of Things: “Security in the Billions: Toward a Multinational Strategy to Better Secure the IoT Ecosystem.” The report examines the regulatory approaches taken by four countries—the US, the UK, Australia, and Singapore—to secure home, medical, and networking/telecommunications devices. The report recommends that regulators should 1) enforce minimum security standards for manufacturers of IoT devices, 2) incentivize higher levels of security through public contracting, and 3) try to align IoT standards internationally (for example, international guidance on handling connected devices that stop receiving security updates).

This report looks to existing security initiatives as much as possible—both to leverage existing work and to avoid counterproductively suggesting an entirely new approach to IoT security—while recommending changes and introducing more cohesion and coordination to regulatory approaches to IoT cybersecurity. It walks through the current state of risk in the ecosystem, analyzes challenges with the current policy model, and describes a synthesized IoT security framework. The report then lays out nine recommendations for government and industry actors to enhance IoT security, broken into three recommendation sets: setting a baseline of minimally acceptable security (or “Tier 1”), incentivizing above the baseline (or “Tier 2” and above), and pursuing international alignment on standards and implementation across the entire IoT product lifecycle (from design to sunsetting). It also includes implementation guidance for the United States, Australia, UK, and Singapore, providing a clearer roadmap for countries to operationalize the recommendations in their specific jurisdictions—and push towards a stronger, more cohesive multinational approach to securing the IoT worldwide.

Note: One of the authors of this report was a student of mine at Harvard Kennedy School, and did this work with the Atlantic Council under my supervision.

Posted on September 27, 2022 at 6:15 AMView Comments

Using Radar to Read Body Language

Yet another method of surveillance:

Radar can detect you moving closer to a computer and entering its personal space. This might mean the computer can then choose to perform certain actions, like booting up the screen without requiring you to press a button. This kind of interaction already exists in current Google Nest smart displays, though instead of radar, Google employs ultrasonic sound waves to measure a person’s distance from the device. When a Nest Hub notices you’re moving closer, it highlights current reminders, calendar events, or other important notifications.

Proximity alone isn’t enough. What if you just ended up walking past the machine and looking in a different direction? To solve this, Soli can capture greater subtleties in movements and gestures, such as body orientation, the pathway you might be taking, and the direction your head is facing—­aided by machine learning algorithms that further refine the data. All this rich radar information helps it better guess if you are indeed about to start an interaction with the device, and what the type of engagement might be.

[…]

The ATAP team chose to use radar because it’s one of the more privacy-friendly methods of gathering rich spatial data. (It also has really low latency, works in the dark, and external factors like sound or temperature don’t affect it.) Unlike a camera, radar doesn’t capture and store distinguishable images of your body, your face, or other means of identification. “It’s more like an advanced motion sensor,” Giusti says. Soli has a detectable range of around 9 feet­—less than most cameras­—but multiple gadgets in your home with the Soli sensor could effectively blanket your space and create an effective mesh network for tracking your whereabouts in a home.

“Privacy-friendly” is a relative term.

These technologies are coming. They’re going to be an essential part of the Internet of Things.

Posted on March 8, 2022 at 6:01 AMView Comments

Using EM Waves to Detect Malware

I don’t even know what I think about this. Researchers have developed a malware detection system that uses EM waves: “Obfuscation Revealed: Leveraging Electromagnetic Signals for Obfuscated Malware Classification.”

Abstract: The Internet of Things (IoT) is constituted of devices that are exponentially growing in number and in complexity. They use numerous customized firmware and hardware, without taking into consideration security issues, which make them a target for cybercriminals, especially malware authors.

We will present a novel approach of using side channel information to identify the kinds of threats that are targeting the device. Using our approach, a malware analyst is able to obtain precise knowledge about malware type and identity, even in the presence of obfuscation techniques which may prevent static or symbolic binary analysis. We recorded 100,000 measurement traces from an IoT device infected by various in-the-wild malware samples and realistic benign activity. Our method does not require any modification on the target device. Thus, it can be deployed independently from the resources available without any overhead. Moreover, our approach has the advantage that it can hardly be detected and evaded by the malware authors. In our experiments, we were able to predict three generic malware types (and one benign class) with an accuracy of 99.82%. Even more, our results show that we are able to classify altered malware samples with unseen obfuscation techniques during the training phase, and to determine what kind of obfuscations were applied to the binary, which makes our approach particularly useful for malware analysts.

This seems impossible. It’s research, not a commercial product. But it’s fascinating if true.

Posted on January 14, 2022 at 6:13 AMView Comments

1 2 3 13

Sidebar photo of Bruce Schneier by Joe MacInnis.