Entries Tagged "biometrics"

Page 1 of 16

The European Parliament Voted to Ban Remote Biometric Surveillance

It’s not actually banned in the EU yet—the legislative process is much more complicated than that—but it’s a step: a total ban on biometric mass surveillance.

To respect “privacy and human dignity,” MEPs said that EU lawmakers should pass a permanent ban on the automated recognition of individuals in public spaces, saying citizens should only be monitored when suspected of a crime.

The parliament has also called for a ban on the use of private facial recognition databases—such as the controversial AI system created by U.S. startup Clearview (also already in use by some police forces in Europe)—and said predictive policing based on behavioural data should also be outlawed.

MEPs also want to ban social scoring systems which seek to rate the trustworthiness of citizens based on their behaviour or personality.

Posted on October 11, 2021 at 7:49 AMView Comments

TikTok Can Now Collect Biometric Data

This is probably worth paying attention to:

A change to TikTok’s U.S. privacy policy on Wednesday introduced a new section that says the social video app “may collect biometric identifiers and biometric information” from its users’ content. This includes things like “faceprints and voiceprints,” the policy explained. Reached for comment, TikTok could not confirm what product developments necessitated the addition of biometric data to its list of disclosures about the information it automatically collects from users, but said it would ask for consent in the case such data collection practices began.

Posted on June 14, 2021 at 10:11 AMView Comments

Detecting Deep Fakes with a Heartbeat

Researchers can detect deep fakes because they don’t convincingly mimic human blood circulation in the face:

In particular, video of a person’s face contains subtle shifts in color that result from pulses in blood circulation. You might imagine that these changes would be too minute to detect merely from a video, but viewing videos that have been enhanced to exaggerate these color shifts will quickly disabuse you of that notion. This phenomenon forms the basis of a technique called photoplethysmography, or PPG for short, which can be used, for example, to monitor newborns without having to attach anything to a their very sensitive skin.

Deep fakes don’t lack such circulation-induced shifts in color, but they don’t recreate them with high fidelity. The researchers at SUNY and Intel found that “biological signals are not coherently preserved in different synthetic facial parts” and that “synthetic content does not contain frames with stable PPG.” Translation: Deep fakes can’t convincingly mimic how your pulse shows up in your face.

The inconsistencies in PPG signals found in deep fakes provided these researchers with the basis for a deep-learning system of their own, dubbed FakeCatcher, which can categorize videos of a person’s face as either real or fake with greater than 90 percent accuracy. And these same three researchers followed this study with another demonstrating that this approach can be applied not only to revealing that a video is fake, but also to show what software was used to create it.

Of course, this is an arms race. I expect deep fake programs to become good enough to fool FakeCatcher in a few months.

Posted on October 1, 2020 at 6:19 AMView Comments

Yet Another Biometric: Bioacoustic Signatures

Sound waves through the body are unique enough to be a biometric:

“Modeling allowed us to infer what structures or material features of the human body actually differentiated people,” explains Joo Yong Sim, one of the ETRI researchers who conducted the study. “For example, we could see how the structure, size, and weight of the bones, as well as the stiffness of the joints, affect the bioacoustics spectrum.”

[…]

Notably, the researchers were concerned that the accuracy of this approach could diminish with time, since the human body constantly changes its cells, matrices, and fluid content. To account for this, they acquired the acoustic data of participants at three separate intervals, each 30 days apart.

“We were very surprised that people’s bioacoustics spectral pattern maintained well over time, despite the concern that the pattern would change greatly,” says Sim. “These results suggest that the bioacoustics signature reflects more anatomical features than changes in water, body temperature, or biomolecule concentration in blood that change from day to day.”

It’s not great. A 97% accuracy is worse than fingerprints and iris scans, and while they were able to reproduce the biometric in a month it almost certainly changes as we age, gain and lose weight, and so on. Still, interesting.

EDITED TO ADD: This post has been translated into Spanish.

Posted on August 21, 2020 at 6:03 AMView Comments

Public Voice Launches Petition for an International Moratorium on Using Facial Recognition for Mass Surveillance

Coming out of the Privacy Commissioners’ Conference in Albania, Public Voice is launching a petition for an international moratorium on using facial recognition software for mass surveillance.

You can sign on as an individual or an organization. I did. You should as well. No, I don’t think that countries will magically adopt this moratorium. But it’s important for us all to register our dissent.

Posted on October 22, 2019 at 10:12 AMView Comments

Surveillance as a Condition for Humanitarian Aid

Excellent op-ed on the growing trend to tie humanitarian aid to surveillance.

Despite the best intentions, the decision to deploy technology like biometrics is built on a number of unproven assumptions, such as, technology solutions can fix deeply embedded political problems. And that auditing for fraud requires entire populations to be tracked using their personal data. And that experimental technologies will work as planned in a chaotic conflict setting. And last, that the ethics of consent don’t apply for people who are starving.

Posted on August 20, 2019 at 6:45 AMView Comments

Bypassing Apple FaceID's Liveness Detection Feature

Apple’s FaceID has a liveness detection feature, which prevents someone from unlocking a victim’s phone by putting it in front of his face while he’s sleeping. That feature has been hacked:

Researchers on Wednesday during Black Hat USA 2019 demonstrated an attack that allowed them to bypass a victim’s FaceID and log into their phone simply by putting a pair of modified glasses on their face. By merely placing tape carefully over the lenses of a pair glasses and placing them on the victim’s face the researchers demonstrated how they could bypass Apple’s FaceID in a specific scenario. The attack itself is difficult, given the bad actor would need to figure out how to put the glasses on an unconscious victim without waking them up.

Posted on August 15, 2019 at 6:19 AMView Comments

Cardiac Biometric

MIT Technology Review is reporting about an infrared laser device that can identify people by their unique cardiac signature at a distance:

A new device, developed for the Pentagon after US Special Forces requested it, can identify people without seeing their face: instead it detects their unique cardiac signature with an infrared laser. While it works at 200 meters (219 yards), longer distances could be possible with a better laser. “I don’t want to say you could do it from space,” says Steward Remaly, of the Pentagon’s Combatting Terrorism Technical Support Office, “but longer ranges should be possible.”

Contact infrared sensors are often used to automatically record a patient’s pulse. They work by detecting the changes in reflection of infrared light caused by blood flow. By contrast, the new device, called Jetson, uses a technique known as laser vibrometry to detect the surface movement caused by the heartbeat. This works though typical clothing like a shirt and a jacket (though not thicker clothing such as a winter coat).

[…]

Remaly’s team then developed algorithms capable of extracting a cardiac signature from the laser signals. He claims that Jetson can achieve over 95% accuracy under good conditions, and this might be further improved. In practice, it’s likely that Jetson would be used alongside facial recognition or other identification methods.

Wenyao Xu of the State University of New York at Buffalo has also developed a remote cardiac sensor, although it works only up to 20 meters away and uses radar. He believes the cardiac approach is far more robust than facial recognition. “Compared with face, cardiac biometrics are more stable and can reach more than 98% accuracy,” he says.

I have my usual questions about false positives vs false negatives, how stable the biometric is over time, and whether it works better or worse against particular sub-populations. But interesting nonetheless.

Posted on July 8, 2019 at 12:38 PMView Comments

1 2 3 16

Sidebar photo of Bruce Schneier by Joe MacInnis.