Entries Tagged "vulnerabilities"

Page 1 of 41

The Justice Department Will No Longer Charge Security Researchers with Criminal Hacking

Following a recent Supreme Court ruling, the Justice Department will no longer prosecute “good faith” security researchers with cybercrimes:

The policy for the first time directs that good-faith security research should not be charged. Good faith security research means accessing a computer solely for purposes of good-faith testing, investigation, and/or correction of a security flaw or vulnerability, where such activity is carried out in a manner designed to avoid any harm to individuals or the public, and where the information derived from the activity is used primarily to promote the security or safety of the class of devices, machines, or online services to which the accessed computer belongs, or those who use such devices, machines, or online services.

[…]

The new policy states explicitly the longstanding practice that “the department’s goals for CFAA enforcement are to promote privacy and cybersecurity by upholding the legal right of individuals, network owners, operators, and other persons to ensure the confidentiality, integrity, and availability of information stored in their information systems.” Accordingly, the policy clarifies that hypothetical CFAA violations that have concerned some courts and commentators are not to be charged. Embellishing an online dating profile contrary to the terms of service of the dating website; creating fictional accounts on hiring, housing, or rental websites; using a pseudonym on a social networking site that prohibits them; checking sports scores at work; paying bills at work; or violating an access restriction contained in a term of service are not themselves sufficient to warrant federal criminal charges. The policy focuses the department’s resources on cases where a defendant is either not authorized at all to access a computer or was authorized to access one part of a computer—such as one email account—and, despite knowing about that restriction, accessed a part of the computer to which his authorized access did not extend, such as other users’ emails.

News article.

Posted on May 24, 2022 at 6:11 AMView Comments

Zero-Day Vulnerabilities Are on the Rise

Both Google and Mandiant are reporting a significant increase in the number of zero-day vulnerabilities reported in 2021.

Google:

2021 included the detection and disclosure of 58 in-the-wild 0-days, the most ever recorded since Project Zero began tracking in mid-2014. That’s more than double the previous maximum of 28 detected in 2015 and especially stark when you consider that there were only 25 detected in 2020. We’ve tracked publicly known in-the-wild 0-day exploits in this spreadsheet since mid-2014.

While we often talk about the number of 0-day exploits used in-the-wild, what we’re actually discussing is the number of 0-day exploits detected and disclosed as in-the-wild. And that leads into our first conclusion: we believe the large uptick in in-the-wild 0-days in 2021 is due to increased detection and disclosure of these 0-days, rather than simply increased usage of 0-day exploits.

Mandiant:

In 2021, Mandiant Threat Intelligence identified 80 zero-days exploited in the wild, which is more than double the previous record volume in 2019. State-sponsored groups continue to be the primary actors exploiting zero-day vulnerabilities, led by Chinese groups. The proportion of financially motivated actors­—particularly ransomware groups—­deploying zero-day exploits also grew significantly, and nearly 1 in 3 identified actors exploiting zero-days in 2021 was financially motivated. Threat actors exploited zero-days in Microsoft, Apple, and Google products most frequently, likely reflecting the popularity of these vendors. The vast increase in zero-day exploitation in 2021, as well as the diversification of actors using them, expands the risk portfolio for organizations in nearly every industry sector and geography, particularly those that rely on these popular systems.

News article.

Posted on April 27, 2022 at 1:40 PMView Comments

Wyze Camera Vulnerability

Wyze ignored a vulnerability in its home security cameras for three years. Bitdefender, who discovered the vulnerability, let the company get away with it.

In case you’re wondering, no, that is not normal in the security community. While experts tell me that the concept of a “responsible disclosure timeline” is a little outdated and heavily depends on the situation, we’re generally measuring in days, not years. “The majority of researchers have policies where if they make a good faith effort to reach a vendor and don’t get a response, that they publicly disclose in 30 days,” Alex Stamos, director of the Stanford Internet Observatory and former chief security officer at Facebook, tells me.

Posted on April 4, 2022 at 6:13 AMView Comments

Why Vaccine Cards Are So Easily Forged

My proof of COVID-19 vaccination is recorded on an easy-to-forge paper card. With little trouble, I could print a blank form, fill it out, and snap a photo. Small imperfections wouldn’t pose any problem; you can’t see whether the paper’s weight is right in a digital image. When I fly internationally, I have to show a negative COVID-19 test result. That, too, would be easy to fake. I could change the date on an old test, or put my name on someone else’s test, or even just make something up on my computer. After all, there’s no standard format for test results; airlines accept anything that looks plausible.

After a career spent in cybersecurity, this is just how my mind works: I find vulnerabilities in everything I see. When it comes to the measures intended to keep us safe from COVID-19, I don’t even have to look very hard. But I’m not alarmed. The fact that these measures are flawed is precisely why they’re going to be so helpful in getting us past the pandemic.

Back in 2003, at the height of our collective terrorism panic, I coined the term security theater to describe measures that look like they’re doing something but aren’t. We did a lot of security theater back then: ID checks to get into buildings, even though terrorists have IDs; random bag searches in subway stations, forcing terrorists to walk to the next station; airport bans on containers with more than 3.4 ounces of liquid, which can be recombined into larger bottles on the other side of security. At first glance, asking people for photos of easily forged pieces of paper or printouts of readily faked test results might look like the same sort of security theater. There’s an important difference, though, between the most effective strategies for preventing terrorism and those for preventing COVID-19 transmission.

Security measures fail in one of two ways: Either they can’t stop a bad actor from doing a bad thing, or they block an innocent person from doing an innocuous thing. Sometimes one is more important than the other. When it comes to attacks that have catastrophic effects—say, launching nuclear missiles—we want the security to stop all bad actors, even at the expense of usability. But when we’re talking about milder attacks, the balance is less obvious. Sure, banks want credit cards to be impervious to fraud, but if the security measures also regularly prevent us from using our own credit cards, we would rebel and banks would lose money. So banks often put ease of use ahead of security.

That’s how we should think about COVID-19 vaccine cards and test documentation. We’re not looking for perfection. If most everyone follows the rules and doesn’t cheat, we win. Making these systems easy to use is the priority. The alternative just isn’t worth it.

I design computer security systems for a living. Given the challenge, I could design a system of vaccine and test verification that makes cheating very hard. I could issue cards that are as unforgeable as passports, or create phone apps that are linked to highly secure centralized databases. I could build a massive surveillance apparatus and enforce the sorts of strict containment measures used in China’s zero-COVID-19 policy. But the costs—in money, in liberty, in privacy—are too high. We can get most of the benefits with some pieces of paper and broad, but not universal, compliance with the rules.

It also helps that many of the people who break the rules are so very bad at it. Every story of someone getting arrested for faking a vaccine card, or selling a fake, makes it less likely that the next person will cheat. Every traveler arrested for faking a COVID-19 test does the same thing. When a famous athlete such as Novak Djokovic gets caught lying about his past COVID-19 diagnosis when trying to enter Australia, others conclude that they shouldn’t try lying themselves.

Our goal should be to impose the best policies that we can, given the trade-offs. The small number of cheaters isn’t going to be a public-health problem. I don’t even care if they feel smug about cheating the system. The system is resilient; it can withstand some cheating.

Last month, I visited New York City, where restrictions that are now being lifted were then still in effect. Every restaurant and cocktail bar I went to verified the photo of my vaccine card that I keep on my phone, and at least pretended to compare the name on that card with the one on my photo ID. I felt a lot safer in those restaurants because of that security theater, even if a few of my fellow patrons cheated.

This essay previously appeared in the Atlantic.

Posted on March 18, 2022 at 6:12 AMView Comments

Samsung Encryption Flaw

Researchers have found a major encryption flaw in 100 million Samsung Galaxy phones.

From the abstract:

In this work, we expose the cryptographic design and implementation of Android’s Hardware-Backed Keystore in Samsung’s Galaxy S8, S9, S10, S20, and S21 flagship devices. We reversed-engineered and provide a detailed description of the cryptographic design and code structure, and we unveil severe design flaws. We present an IV reuse attack on AES-GCM that allows an attacker to extract hardware-protected key material, and a downgrade attack that makes even the latest Samsung devices vulnerable to the IV reuse attack. We demonstrate working key extraction attacks on the latest devices. We also show the implications of our attacks on two higher-level cryptographic protocols between the TrustZone and a remote server: we demonstrate a working FIDO2 WebAuthn login bypass and a compromise of Google’s Secure Key Import.

Here are the details:

As we discussed in Section 3, the wrapping key used to encrypt the key blobs (HDK) is derived using a salt value computed by the Keymaster TA. In v15 and v20-s9 blobs, the salt is a deterministic function that depends only on the application ID and application data (and constant strings), which the Normal World client fully controls. This means that for a given application, all key blobs will be encrypted using the same key. As the blobs are encrypted in AES-GCM mode-of-operation, the security of the resulting encryption scheme depends on its IV values never being reused.

Gadzooks. That’s a really embarrassing mistake. GSM needs a new nonce for every encryption. Samsung took a secure cipher mode and implemented it insecurely.

News article.

Posted on March 4, 2022 at 6:19 AMView Comments

Vulnerability in Stalkerware Apps

TechCrunch is reporting—but not describing in detail—a vulnerability in a series of stalkerware apps that exposes personal information of the victims. The vulnerability isn’t in the apps installed on the victims’ phones, but in the website the stalker goes to view the information the app collects. The article is worth reading, less for the description of the vulnerability and more for the shadowy string of companies behind these stalkerware apps.

Posted on March 2, 2022 at 6:25 AMView Comments

Vendors are Fixing Security Flaws Faster

Google’s Project Zero is reporting that software vendors are patching their code faster.

tl;dr

  • In 2021, vendors took an average of 52 days to fix security vulnerabilities reported from Project Zero. This is a significant acceleration from an average of about 80 days 3 years ago.
  • In addition to the average now being well below the 90-day deadline, we have also seen a dropoff in vendors missing the deadline (or the additional 14-day grace period). In 2021, only one bug exceeded its fix deadline, though 14% of bugs required the grace period.
  • Differences in the amount of time it takes a vendor/product to ship a fix to users reflects their product design, development practices, update cadence, and general processes towards security reports. We hope that this comparison can showcase best practices, and encourage vendors to experiment with new policies.
  • This data aggregation and analysis is relatively new for Project Zero, but we hope to do it more in the future. We encourage all vendors to consider publishing aggregate data on their time-to-fix and time-to-patch for externally reported vulnerabilities, as well as more data sharing and transparency in general.

Posted on February 16, 2022 at 7:00 AMView Comments

Finding Vulnerabilities in Open Source Projects

The Open Source Security Foundation announced $10 million in funding from a pool of tech and financial companies, including $5 million from Microsoft and Google, to find vulnerabilities in open source projects:

The “Alpha” side will emphasize vulnerability testing by hand in the most popular open-source projects, developing close working relationships with a handful of the top 200 projects for testing each year. “Omega” will look more at the broader landscape of open source, running automated testing on the top 10,000.

This is an excellent idea. This code ends up in all sorts of critical applications.

Log4j would be a prototypical vulnerability that the Alpha team might look for ­—an unknown problem in a high-impact project that automated tools would not be able to pick up before a human discovered it. The goal is not to use the personnel engaged with Alpha to replicate dependency analysis, for example.

Posted on February 2, 2022 at 9:58 AMView Comments

Twelve-Year-Old Linux Vulnerability Discovered and Patched

It’s a privilege escalation vulnerability:

Linux users on Tuesday got a major dose of bad news—a 12-year-old vulnerability in a system tool called Polkit gives attackers unfettered root privileges on machines running most major distributions of the open source operating system.

Previously called PolicyKit, Polkit manages system-wide privileges in Unix-like OSes. It provides a mechanism for nonprivileged processes to safely interact with privileged processes. It also allows users to execute commands with high privileges by using a component called pkexec, followed by the command.

It was discovered in October, and disclosed last week—after most Linux distributions issued patches. Of course, there’s lots of Linux out there that never gets patched, so expect this to be exploited in the wild for a long time.

Of course, this vulnerability doesn’t give attackers access to the system. They have to get that some other way. But if they get access, this vulnerability gives them root privileges.

Posted on January 31, 2022 at 6:18 AMView Comments

More Log4j News

Log4j is being exploited by all sorts of attackers, all over the Internet:

At that point it was reported that there were over 100 attempts to exploit the vulnerability every minute. “Since we started to implement our protection we prevented over 1,272,000 attempts to allocate the vulnerability, over 46% of those attempts were made by known malicious groups,” said cybersecurity company Check Point.

And according to Check Point, attackers have now attempted to exploit the flaw on over 40% of global networks.

And a second vulnerability was found, in the patch for the first vulnerability. This is likely not to be the last.

Posted on December 16, 2021 at 9:50 AMView Comments

1 2 3 41

Sidebar photo of Bruce Schneier by Joe MacInnis.