Entries Tagged "vulnerabilities"

Page 2 of 44

Microsoft Secure Boot Bug

Microsoft is currently patching a zero-day Secure-Boot bug.

The BlackLotus bootkit is the first-known real-world malware that can bypass Secure Boot protections, allowing for the execution of malicious code before your PC begins loading Windows and its many security protections. Secure Boot has been enabled by default for over a decade on most Windows PCs sold by companies like Dell, Lenovo, HP, Acer, and others. PCs running Windows 11 must have it enabled to meet the software’s system requirements.

Microsoft says that the vulnerability can be exploited by an attacker with either physical access to a system or administrator rights on a system. It can affect physical PCs and virtual machines with Secure Boot enabled.

That’s important. This is a nasty vulnerability, but it takes some work to exploit it.

The problem with the patch is that it breaks backwards compatibility: “…once the fixes have been enabled, your PC will no longer be able to boot from older bootable media that doesn’t include the fixes.”

And:

Not wanting to suddenly render any users’ systems unbootable, Microsoft will be rolling the update out in phases over the next few months. The initial version of the patch requires substantial user intervention to enable—you first need to install May’s security updates, then use a five-step process to manually apply and verify a pair of “revocation files” that update your system’s hidden EFI boot partition and your registry. These will make it so that older, vulnerable versions of the bootloader will no longer be trusted by PCs.

A second update will follow in July that won’t enable the patch by default but will make it easier to enable. A third update in “first quarter 2024” will enable the fix by default and render older boot media unbootable on all patched Windows PCs. Microsoft says it is “looking for opportunities to accelerate this schedule,” though it’s unclear what that would entail.

So it’ll be almost a year before this is completely fixed.

Posted on May 17, 2023 at 7:01 AMView Comments

SolarWinds Detected Six Months Earlier

New reporting from Wired reveals that the Department of Justice detected the SolarWinds attack six months before Mandiant detected it in December 2020, but didn’t realize what it detected—and so ignored it.

WIRED can now confirm that the operation was actually discovered by the DOJ six months earlier, in late May 2020­—but the scale and significance of the breach wasn’t immediately apparent. Suspicions were triggered when the department detected unusual traffic emanating from one of its servers that was running a trial version of the Orion software suite made by SolarWinds, according to sources familiar with the incident. The software, used by system administrators to manage and configure networks, was communicating externally with an unfamiliar system on the internet. The DOJ asked the security firm Mandiant to help determine whether the server had been hacked. It also engaged Microsoft, though it’s not clear why the software maker was also brought onto the investigation.

[…]

Investigators suspected the hackers had breached the DOJ server directly, possibly by exploiting a vulnerability in the Orion software. They reached out to SolarWinds to assist with the inquiry, but the company’s engineers were unable to find a vulnerability in their code. In July 2020, with the mystery still unresolved, communication between investigators and SolarWinds stopped. A month later, the DOJ purchased the Orion system, suggesting that the department was satisfied that there was no further threat posed by the Orion suite, the sources say.

EDITED TO ADD (5/4): More details about the SolarWinds attack from Wired.com.

Posted on May 3, 2023 at 6:13 AMView Comments

North Korea Hacking Cryptocurrency Sites with 3CX Exploit

News:

Researchers at Russian cybersecurity firm Kaspersky today revealed that they identified a small number of cryptocurrency-focused firms as at least some of the victims of the 3CX software supply-chain attack that’s unfolded over the past week. Kaspersky declined to name any of those victim companies, but it notes that they’re based in “western Asia.”

Security firms CrowdStrike and SentinelOne last week pinned the operation on North Korean hackers, who compromised 3CX installer software that’s used by 600,000 organizations worldwide, according to the vendor. Despite the potentially massive breadth of that attack, which SentinelOne dubbed “Smooth Operator,” Kaspersky has now found that the hackers combed through the victims infected with its corrupted software to ultimately target fewer than 10 machines­—at least as far as Kaspersky could observe so far—­and that they seemed to be focusing on cryptocurrency firms with “surgical precision.”

Posted on April 4, 2023 at 10:10 AMView Comments

Mass Ransomware Attack

A vulnerability in a popular data transfer tool has resulted in a mass ransomware attack:

TechCrunch has learned of dozens of organizations that used the affected GoAnywhere file transfer software at the time of the ransomware attack, suggesting more victims are likely to come forward.

However, while the number of victims of the mass-hack is widening, the known impact is murky at best.

Since the attack in late January or early February—the exact date is not known—Clop has disclosed less than half of the 130 organizations it claimed to have compromised via GoAnywhere, a system that can be hosted in the cloud or on an organization’s network that allows companies to securely transfer huge sets of data and other large files.

Posted on March 23, 2023 at 7:05 AMView Comments

Attacking Machine Learning Systems

The field of machine learning (ML) security—and corresponding adversarial ML—is rapidly advancing as researchers develop sophisticated techniques to perturb, disrupt, or steal the ML model or data. It’s a heady time; because we know so little about the security of these systems, there are many opportunities for new researchers to publish in this field. In many ways, this circumstance reminds me of the cryptanalysis field in the 1990. And there is a lesson in that similarity: the complex mathematical attacks make for good academic papers, but we mustn’t lose sight of the fact that insecure software will be the likely attack vector for most ML systems.

We are amazed by real-world demonstrations of adversarial attacks on ML systems, such as a 3D-printed object that looks like a turtle but is recognized (from any orientation) by the ML system as a gun. Or adding a few stickers that look like smudges to a stop sign so that it is recognized by a state-of-the-art system as a 45 mi/h speed limit sign. But what if, instead, somebody hacked into the system and just switched the labels for “gun” and “turtle” or swapped “stop” and “45 mi/h”? Systems can only match images with human-provided labels, so the software would never notice the switch. That is far easier and will remain a problem even if systems are developed that are robust to those adversarial attacks.

At their core, modern ML systems have complex mathematical models that use training data to become competent at a task. And while there are new risks inherent in the ML model, all of that complexity still runs in software. Training data are still stored in memory somewhere. And all of that is on a computer, on a network, and attached to the Internet. Like everything else, these systems will be hacked through vulnerabilities in those more conventional parts of the system.

This shouldn’t come as a surprise to anyone who has been working with Internet security. Cryptography has similar vulnerabilities. There is a robust field of cryptanalysis: the mathematics of code breaking. Over the last few decades, we in the academic world have developed a variety of cryptanalytic techniques. We have broken ciphers we previously thought secure. This research has, in turn, informed the design of cryptographic algorithms. The classified world of the NSA and its foreign counterparts have been doing the same thing for far longer. But aside from some special cases and unique circumstances, that’s not how encryption systems are exploited in practice. Outside of academic papers, cryptosystems are largely bypassed because everything around the cryptography is much less secure.

I wrote this in my book, Data and Goliath:

The problem is that encryption is just a bunch of math, and math has no agency. To turn that encryption math into something that can actually provide some security for you, it has to be written in computer code. And that code needs to run on a computer: one with hardware, an operating system, and other software. And that computer needs to be operated by a person and be on a network. All of those things will invariably introduce vulnerabilities that undermine the perfection of the mathematics…

This remains true even for pretty weak cryptography. It is much easier to find an exploitable software vulnerability than it is to find a cryptographic weakness. Even cryptographic algorithms that we in the academic community regard as “broken”—meaning there are attacks that are more efficient than brute force—are usable in the real world because the difficulty of breaking the mathematics repeatedly and at scale is much greater than the difficulty of breaking the computer system that the math is running on.

ML systems are similar. Systems that are vulnerable to model stealing through the careful construction of queries are more vulnerable to model stealing by hacking into the computers they’re stored in. Systems that are vulnerable to model inversion—this is where attackers recover the training data through carefully constructed queries—are much more vulnerable to attacks that take advantage of unpatched vulnerabilities.

But while security is only as strong as the weakest link, this doesn’t mean we can ignore either cryptography or ML security. Here, our experience with cryptography can serve as a guide. Cryptographic attacks have different characteristics than software and network attacks, something largely shared with ML attacks. Cryptographic attacks can be passive. That is, attackers who can recover the plaintext from nothing other than the ciphertext can eavesdrop on the communications channel, collect all of the encrypted traffic, and decrypt it on their own systems at their own pace, perhaps in a giant server farm in Utah. This is bulk surveillance and can easily operate on this massive scale.

On the other hand, computer hacking has to be conducted one target computer at a time. Sure, you can develop tools that can be used again and again. But you still need the time and expertise to deploy those tools against your targets, and you have to do so individually. This means that any attacker has to prioritize. So while the NSA has the expertise necessary to hack into everyone’s computer, it doesn’t have the budget to do so. Most of us are simply too low on its priorities list to ever get hacked. And that’s the real point of strong cryptography: it forces attackers like the NSA to prioritize.

This analogy only goes so far. ML is not anywhere near as mathematically sound as cryptography. Right now, it is a sloppy misunderstood mess: hack after hack, kludge after kludge, built on top of each other with some data dependency thrown in. Directly attacking an ML system with a model inversion attack or a perturbation attack isn’t as passive as eavesdropping on an encrypted communications channel, but it’s using the ML system as intended, albeit for unintended purposes. It’s much safer than actively hacking the network and the computer that the ML system is running on. And while it doesn’t scale as well as cryptanalytic attacks can—and there likely will be a far greater variety of ML systems than encryption algorithms—it has the potential to scale better than one-at-a-time computer hacking does. So here again, good ML security denies attackers all of those attack vectors.

We’re still in the early days of studying ML security, and we don’t yet know the contours of ML security techniques. There are really smart people working on this and making impressive progress, and it’ll be years before we fully understand it. Attacks come easy, and defensive techniques are regularly broken soon after they’re made public. It was the same with cryptography in the 1990s, but eventually the science settled down as people better understood the interplay between attack and defense. So while Google, Amazon, Microsoft, and Tesla have all faced adversarial ML attacks on their production systems in the last three years, that’s not going to be the norm going forward.

All of this also means that our security for ML systems depends largely on the same conventional computer security techniques we’ve been using for decades. This includes writing vulnerability-free software, designing user interfaces that help resist social engineering, and building computer networks that aren’t full of holes. It’s the same risk-mitigation techniques that we’ve been living with for decades. That we’re still mediocre at it is cause for concern, with regard to both ML systems and computing in general.

I love cryptography and cryptanalysis. I love the elegance of the mathematics and the thrill of discovering a flaw—or even of reading and understanding a flaw that someone else discovered—in the mathematics. It feels like security in its purest form. Similarly, I am starting to love adversarial ML and ML security, and its tricks and techniques, for the same reasons.

I am not advocating that we stop developing new adversarial ML attacks. It teaches us about the systems being attacked and how they actually work. They are, in a sense, mechanisms for algorithmic understandability. Building secure ML systems is important research and something we in the security community should continue to do.

There is no such thing as a pure ML system. Every ML system is a hybrid of ML software and traditional software. And while ML systems bring new risks that we haven’t previously encountered, we need to recognize that the majority of attacks against these systems aren’t going to target the ML part. Security is only as strong as the weakest link. As bad as ML security is right now, it will improve as the science improves. And from then on, as in cryptography, the weakest link will be in the software surrounding the ML system.

This essay originally appeared in the May 2020 issue of IEEE Computer. I forgot to reprint it here.

Posted on February 6, 2023 at 6:02 AMView Comments

Security Analysis of Threema

A group of Swiss researchers have published an impressive security analysis of Threema.

We provide an extensive cryptographic analysis of Threema, a Swiss-based encrypted messaging application with more than 10 million users and 7000 corporate customers. We present seven different attacks against the protocol in three different threat models. As one example, we present a cross-protocol attack which breaks authentication in Threema and which exploits the lack of proper key separation between different sub-protocols. As another, we demonstrate a compression-based side-channel attack that recovers users’ long-term private keys through observation of the size of Threema encrypted back-ups. We discuss remediations for our attacks and draw three wider lessons for developers of secure protocols.

From a news article:

Threema has more than 10 million users, which include the Swiss government, the Swiss army, German Chancellor Olaf Scholz, and other politicians in that country. Threema developers advertise it as a more secure alternative to Meta’s WhatsApp messenger. It’s among the top Android apps for a fee-based category in Switzerland, Germany, Austria, Canada, and Australia. The app uses a custom-designed encryption protocol in contravention of established cryptographic norms.

The company is performing the usual denials and deflections:

In a web post, Threema officials said the vulnerabilities applied to an old protocol that’s no longer in use. It also said the researchers were overselling their findings.

“While some of the findings presented in the paper may be interesting from a theoretical standpoint, none of them ever had any considerable real-world impact,” the post stated. “Most assume extensive and unrealistic prerequisites that would have far greater consequences than the respective finding itself.”

Left out of the statement is that the protocol the researchers analyzed is old because they disclosed the vulnerabilities to Threema, and Threema updated it.

Posted on January 19, 2023 at 7:21 AMView Comments

Critical Microsoft Code-Execution Vulnerability

A critical code-execution vulnerability in Microsoft Windows was patched in September. It seems that researchers just realized how serious it was (and is):

Like EternalBlue, CVE-2022-37958, as the latest vulnerability is tracked, allows attackers to execute malicious code with no authentication required. Also, like EternalBlue, it’s wormable, meaning that a single exploit can trigger a chain reaction of self-replicating follow-on exploits on other vulnerable systems. The wormability of EternalBlue allowed WannaCry and several other attacks to spread across the world in a matter of minutes with no user interaction required.

But unlike EternalBlue, which could be exploited when using only the SMB, or server message block, a protocol for file and printer sharing and similar network activities, this latest vulnerability is present in a much broader range of network protocols, giving attackers more flexibility than they had when exploiting the older vulnerability.

[…]

Microsoft fixed CVE-2022-37958 in September during its monthly Patch Tuesday rollout of security fixes. At the time, however, Microsoft researchers believed the vulnerability allowed only the disclosure of potentially sensitive information. As such, Microsoft gave the vulnerability a designation of “important.” In the routine course of analyzing vulnerabilities after they’re patched, Palmiotti discovered it allowed for remote code execution in much the way EternalBlue did. Last week, Microsoft revised the designation to critical and gave it a severity rating of 8.1, the same given to EternalBlue.

Posted on December 22, 2022 at 7:01 AMView Comments

Sidebar photo of Bruce Schneier by Joe MacInnis.