Blog: January 2018 Archives

Israeli Scientists Accidentally Reveal Classified Information

According to this story (non-paywall English version here), Israeli scientists released some information to the public they shouldn't have.

Defense establishment officials are now trying to erase any trace of the secret information from the web, but they have run into difficulties because the information was copied and is found on a number of platforms.

Those officials have managed to ensure that the Haaretz article doesn't have any actual information about the information. I have reason to believe the information is related to Internet security. Does anyone know more?

Posted on January 31, 2018 at 2:37 PM22 Comments

After Section 702 Reauthorization

For over a decade, civil libertarians have been fighting government mass surveillance of innocent Americans over the Internet. We've just lost an important battle. On January 18, President Trump signed the renewal of Section 702, domestic mass surveillance became effectively a permanent part of US law.

Section 702 was initially passed in 2008, as an amendment to the Foreign Intelligence Surveillance Act of 1978. As the title of that law says, it was billed as a way for the NSA to spy on non-Americans located outside the United States. It was supposed to be an efficiency and cost-saving measure: the NSA was already permitted to tap communications cables located outside the country, and it was already permitted to tap communications cables from one foreign country to another that passed through the United States. Section 702 allowed it to tap those cables from inside the United States, where it was easier. It also allowed the NSA to request surveillance data directly from Internet companies under a program called PRISM.

The problem is that this authority also gave the NSA the ability to collect foreign communications and data in a way that inherently and intentionally also swept up Americans' communications as well, without a warrant. Other law enforcement agencies are allowed to ask the NSA to search those communications, give their contents to the FBI and other agencies and then lie about their origins in court.

In 1978, after Watergate had revealed the Nixon administration's abuses of power, we erected a wall between intelligence and law enforcement that prevented precisely this kind of sharing of surveillance data under any authority less restrictive than the Fourth Amendment. Weakening that wall is incredibly dangerous, and the NSA should never have been given this authority in the first place.

Arguably, it never was. The NSA had been doing this type of surveillance illegally for years, something that was first made public in 2006. Section 702 was secretly used as a way to paper over that illegal collection, but nothing in the text of the later amendment gives the NSA this authority. We didn't know that the NSA was using this law as the statutory basis for this surveillance until Edward Snowden showed us in 2013.

Civil libertarians have been battling this law in both Congress and the courts ever since it was proposed, and the NSA's domestic surveillance activities even longer. What this most recent vote tells me is that we've lost that fight.

Section 702 was passed under George W. Bush in 2008, reauthorized under Barack Obama in 2012, and now reauthorized again under Trump. In all three cases, congressional support was bipartisan. It has survived multiple lawsuits by the Electronic Frontier Foundation, the ACLU, and others. It has survived the revelations by Snowden that it was being used far more extensively than Congress or the public believed, and numerous public reports of violations of the law. It has even survived Trump's belief that he was being personally spied on by the intelligence community, as well as any congressional fears that Trump could abuse the authority in the coming years. And though this extension lasts only six years, it's inconceivable to me that it will ever be repealed at this point.

So what do we do? If we can't fight this particular statutory authority, where's the new front on surveillance? There are, it turns out, reasonable modifications that target surveillance more generally, and not in terms of any particular statutory authority. We need to look at US surveillance law more generally.

First, we need to strengthen the minimization procedures to limit incidental collection. Since the Internet was developed, all the world's communications travel around in a single global network. It's impossible to collect only foreign communications, because they're invariably mixed in with domestic communications. This is called "incidental" collection, but that's a misleading name. It's collected knowingly, and searched regularly. The intelligence community needs much stronger restrictions on which American communications channels it can access without a court order, and rules that require they delete the data if they inadvertently collect it. More importantly, "collection" is defined as the point the NSA takes a copy of the communications, and not later when they search their databases.

Second, we need to limit how other law enforcement agencies can use incidentally collected information. Today, those agencies can query a database of incidental collection on Americans. The NSA can legally pass information to those other agencies. This has to stop. Data collected by the NSA under its foreign surveillance authority should not be used as a vehicle for domestic surveillance.

The most recent reauthorization modified this lightly, forcing the FBI to obtain a court order when querying the 702 data for a criminal investigation. There are still exceptions and loopholes, though.

Third, we need to end what's called "parallel construction." Today, when a law enforcement agency uses evidence found in this NSA database to arrest someone, it doesn't have to disclose that fact in court. It can reconstruct the evidence in some other manner once it knows about it, and then pretend it learned of it that way. This right to lie to the judge and the defense is corrosive to liberty, and it must end.

Pressure to reform the NSA will probably first come from Europe. Already, European Union courts have pointed to warrantless NSA surveillance as a reason to keep Europeans' data out of US hands. Right now, there is a fragile agreement between the EU and the United States ­-- called "Privacy Shield" -- ­that requires Americans to maintain certain safeguards for international data flows. NSA surveillance goes against that, and it's only a matter of time before EU courts start ruling this way. That'll have significant effects on both government and corporate surveillance of Europeans and, by extension, the entire world.

Further pressure will come from the increased surveillance coming from the Internet of Things. When your home, car, and body are awash in sensors, privacy from both governments and corporations will become increasingly important. Sooner or later, society will reach a tipping point where it's all too much. When that happens, we're going to see significant pushback against surveillance of all kinds. That's when we'll get new laws that revise all government authorities in this area: a clean sweep for a new world, one with new norms and new fears.

It's possible that a federal court will rule on Section 702. Although there have been many lawsuits challenging the legality of what the NSA is doing and the constitutionality of the 702 program, no court has ever ruled on those questions. The Bush and Obama administrations successfully argued that defendants don't have legal standing to sue. That is, they have no right to sue because they don't know they're being targeted. If any of the lawsuits can get past that, things might change dramatically.

Meanwhile, much of this is the responsibility of the tech sector. This problem exists primarily because Internet companies collect and retain so much personal data and allow it to be sent across the network with minimal security. Since the government has abdicated its responsibility to protect our privacy and security, these companies need to step up: Minimize data collection. Don't save data longer than absolutely necessary. Encrypt what has to be saved. Well-designed Internet services will safeguard users, regardless of government surveillance authority.

For the rest of us concerned about this, it's important not to give up hope. Everything we do to keep the issue in the public eye ­-- and not just when the authority comes up for reauthorization again in 2024 -- hastens the day when we will reaffirm our rights to privacy in the digital age.

This essay previously appeared in the Washington Post.

Posted on January 31, 2018 at 6:06 AM49 Comments

Subway Elevators and Movie-Plot Threats

Local residents are opposing adding an elevator to a subway station because terrorists might use it to detonate a bomb. No, really. There's no actual threat analysis, only fear:

"The idea that people can then ride in on the subway with a bomb or whatever and come straight up in an elevator is awful to me," said Claudia Ward, who lives in 15 Broad Street and was among a group of neighbors who denounced the plan at a recent meeting of the local community board. "It's too easy for someone to slip through. And I just don't want my family and my neighbors to be the collateral on that."


Local residents plan to continue to fight, said Ms. Gerstman, noting that her building's board decided against putting decorative planters at the building's entrance over fears that shards could injure people in the event of a blast.

"Knowing that, and then seeing the proposal for giant glass structures in front of my building ­- ding ding ding! -- what does a giant glass structure become in the event of an explosion?" she said.

In 2005, I coined the term "movie-plot threat" to denote a threat scenario that caused undue fear solely because of its specificity. Longtime readers of this blog will remember my annual Movie-Plot Threat Contests. I ended the contest in 2015 because I thought the meme had played itself out. Clearly there's more work to be done.

Posted on January 30, 2018 at 6:26 AM44 Comments

Locating Secret Military Bases via Fitness Data

In November, the company Strava released an anonymous data-visualization map showing all the fitness activity by everyone using the app.

Over this weekend, someone realized that it could be used to locate secret military bases: just look for repeated fitness activity in the middle of nowhere.

News article.

Posted on January 29, 2018 at 2:17 PM43 Comments

Estimating the Cost of Internet Insecurity

It's really hard to estimate the cost of an insecure Internet. Studies are all over the map. A methodical study by RAND is the best work I've seen at trying to put a number on this. The results are, well, all over the map:

"Estimating the Global Cost of Cyber Risk: Methodology and Examples":

Abstract: There is marked variability from study to study in the estimated direct and systemic costs of cyber incidents, which is further complicated by the considerable variation in cyber risk in different countries and industry sectors. This report shares a transparent and adaptable methodology for estimating present and future global costs of cyber risk that acknowledges the considerable uncertainty in the frequencies and costs of cyber incidents. Specifically, this methodology (1) identifies the value at risk by country and industry sector; (2) computes direct costs by considering multiple financial exposures for each industry sector and the fraction of each exposure that is potentially at risk to cyber incidents; and (3) computes the systemic costs of cyber risk between industry sectors using Organisation for Economic Co-operation and Development input, output, and value-added data across sectors in more than 60 countries. The report has a companion Excel-based modeling and simulation platform that allows users to alter assumptions and investigate a wide variety of research questions. The authors used a literature review and data to create multiple sample sets of parameters. They then ran a set of case studies to show the model's functionality and to compare the results against those in the existing literature. The resulting values are highly sensitive to input parameters; for instance, the global cost of cyber crime has direct gross domestic product (GDP) costs of $275 billion to $6.6 trillion and total GDP costs (direct plus systemic) of $799 billion to $22.5 trillion (1.1 to 32.4 percent of GDP).

Here's Rand's risk calculator, if you want to play with the parameters yourself.

Note: I was an advisor to the project.

Separately, Symantec has published a new cybercrime report with their own statistics.

Posted on January 29, 2018 at 6:18 AM16 Comments

Friday Squid Blogging: Squid that Mate, Die, and Then Sink

The mating and death characteristics of some squid are fascinating.

Research paper.

EDITED TO ADD (2/5): Additional info and photos.

As usual, you can also use this squid post to talk about the security stories in the news that I haven't covered.

Read my blog posting guidelines here.

Posted on January 26, 2018 at 4:23 PM137 Comments

The Effects of the Spectre and Meltdown Vulnerabilities

On January 3, the world learned about a series of major security vulnerabilities in modern microprocessors. Called Spectre and Meltdown, these vulnerabilities were discovered by several different researchers last summer, disclosed to the microprocessors' manufacturers, and patched­ -- at least to the extent possible.

This news isn't really any different from the usual endless stream of security vulnerabilities and patches, but it's also a harbinger of the sorts of security problems we're going to be seeing in the coming years. These are vulnerabilities in computer hardware, not software. They affect virtually all high-end microprocessors produced in the last 20 years. Patching them requires large-scale coordination across the industry, and in some cases drastically affects the performance of the computers. And sometimes patching isn't possible; the vulnerability will remain until the computer is discarded.

Spectre and Meltdown aren't anomalies. They represent a new area to look for vulnerabilities and a new avenue of attack. They're the future of security­ -- and it doesn't look good for the defenders.

Modern computers do lots of things at the same time. Your computer and your phone simultaneously run several applications -- ­or apps. Your browser has several windows open. A cloud computer runs applications for many different computers. All of those applications need to be isolated from each other. For security, one application isn't supposed to be able to peek at what another one is doing, except in very controlled circumstances. Otherwise, a malicious advertisement on a website you're visiting could eavesdrop on your banking details, or the cloud service purchased by some foreign intelligence organization could eavesdrop on every other cloud customer, and so on. The companies that write browsers, operating systems, and cloud infrastructure spend a lot of time making sure this isolation works.

Both Spectre and Meltdown break that isolation, deep down at the microprocessor level, by exploiting performance optimizations that have been implemented for the past decade or so. Basically, microprocessors have become so fast that they spend a lot of time waiting for data to move in and out of memory. To increase performance, these processors guess what data they're going to receive and execute instructions based on that. If the guess turns out to be correct, it's a performance win. If it's wrong, the microprocessors throw away what they've done without losing any time. This feature is called speculative execution.

Spectre and Meltdown attack speculative execution in different ways. Meltdown is more of a conventional vulnerability; the designers of the speculative-execution process made a mistake, so they just needed to fix it. Spectre is worse; it's a flaw in the very concept of speculative execution. There's no way to patch that vulnerability; the chips need to be redesigned in such a way as to eliminate it.

Since the announcement, manufacturers have been rolling out patches to these vulnerabilities to the extent possible. Operating systems have been patched so that attackers can't make use of the vulnerabilities. Web browsers have been patched. Chips have been patched. From the user's perspective, these are routine fixes. But several aspects of these vulnerabilities illustrate the sorts of security problems we're only going to be seeing more of.

First, attacks against hardware, as opposed to software, will become more common. Last fall, vulnerabilities were discovered in Intel's Management Engine, a remote-administration feature on its microprocessors. Like Spectre and Meltdown, they affected how the chips operate. Looking for vulnerabilities on computer chips is new. Now that researchers know this is a fruitful area to explore, security researchers, foreign intelligence agencies, and criminals will be on the hunt.

Second, because microprocessors are fundamental parts of computers, patching requires coordination between many companies. Even when manufacturers like Intel and AMD can write a patch for a vulnerability, computer makers and application vendors still have to customize and push the patch out to the users. This makes it much harder to keep vulnerabilities secret while patches are being written. Spectre and Meltdown were announced prematurely because details were leaking and rumors were swirling. Situations like this give malicious actors more opportunity to attack systems before they're guarded.

Third, these vulnerabilities will affect computers' functionality. In some cases, the patches for Spectre and Meltdown result in significant reductions in speed. The press initially reported 30%, but that only seems true for certain servers running in the cloud. For your personal computer or phone, the performance hit from the patch is minimal. But as more vulnerabilities are discovered in hardware, patches will affect performance in noticeable ways.

And then there are the unpatchable vulnerabilities. For decades, the computer industry has kept things secure by finding vulnerabilities in fielded products and quickly patching them. Now there are cases where that doesn't work. Sometimes it's because computers are in cheap products that don't have a patch mechanism, like many of the DVRs and webcams that are vulnerable to the Mirai (and other) botnets -- ­groups of Internet-connected devices sabotaged for coordinated digital attacks. Sometimes it's because a computer chip's functionality is so core to a computer's design that patching it effectively means turning the computer off. This, too, is becoming more common.

Increasingly, everything is a computer: not just your laptop and phone, but your car, your appliances, your medical devices, and global infrastructure. These computers are and always will be vulnerable, but Spectre and Meltdown represent a new class of vulnerability. Unpatchable vulnerabilities in the deepest recesses of the world's computer hardware is the new normal. It's going to leave us all much more vulnerable in the future.

This essay previously appeared on

Posted on January 26, 2018 at 6:12 AM56 Comments

WhatsApp Vulnerability

A new vulnerability in WhatsApp has been discovered:

...the researchers unearthed far more significant gaps in WhatsApp's security: They say that anyone who controls WhatsApp's servers could effortlessly insert new people into an otherwise private group, even without the permission of the administrator who ostensibly controls access to that conversation.

Matthew Green has a good description:

If all you want is the TL;DR, here's the headline finding: due to flaws in both Signal and WhatsApp (which I single out because I use them), it's theoretically possible for strangers to add themselves to an encrypted group chat. However, the caveat is that these attacks are extremely difficult to pull off in practice, so nobody needs to panic. But both issues are very avoidable, and tend to undermine the logic of having an end-to-end encryption protocol in the first place.

Here's the research paper.

EDITED TO ADD (2/12): Commentary from Moxie Marlinspike, the developer of the protocol.

Posted on January 25, 2018 at 6:47 AM21 Comments

Detecting Drone Surveillance with Traffic Analysis

This is clever:

Researchers at Ben Gurion University in Beer Sheva, Israel have built a proof-of-concept system for counter-surveillance against spy drones that demonstrates a clever, if not exactly simple, way to determine whether a certain person or object is under aerial surveillance. They first generate a recognizable pattern on whatever subject­ -- a window, say -- someone might want to guard from potential surveillance. Then they remotely intercept a drone's radio signals to look for that pattern in the streaming video the drone sends back to its operator. If they spot it, they can determine that the drone is looking at their subject.

In other words, they can see what the drone sees, pulling out their recognizable pattern from the radio signal, even without breaking the drone's encrypted video.

The details have to do with the way drone video is compressed:

The researchers' technique takes advantage of an efficiency feature streaming video has used for years, known as "delta frames." Instead of encoding video as a series of raw images, it's compressed into a series of changes from the previous image in the video. That means when a streaming video shows a still object, it transmits fewer bytes of data than when it shows one that moves or changes color.

That compression feature can reveal key information about the content of the video to someone who's intercepting the streaming data, security researchers have shown in recent research, even when the data is encrypted.

Research paper and video.

Posted on January 24, 2018 at 5:28 AM21 Comments

New Malware Hijacks Cryptocurrency Mining

This is a clever attack.

After gaining control of the coin-mining software, the malware replaces the wallet address the computer owner uses to collect newly minted currency with an address controlled by the attacker. From then on, the attacker receives all coins generated, and owners are none the wiser unless they take time to manually inspect their software configuration.

So far it hasn't been very profitable, but it -- or some later version -- eventually will be.

Posted on January 23, 2018 at 6:41 AM50 Comments

Skygofree: New Government Malware for Android

Kaspersky Labs is reporting on a new piece of sophisticated malware:

We observed many web landing pages that mimic the sites of mobile operators and which are used to spread the Android implants. These domains have been registered by the attackers since 2015. According to our telemetry, that was the year the distribution campaign was at its most active. The activities continue: the most recently observed domain was registered on October 31, 2017. Based on our KSN statistics, there are several infected individuals, exclusively in Italy.

Moreover, as we dived deeper into the investigation, we discovered several spyware tools for Windows that form an implant for exfiltrating sensitive data on a targeted machine. The version we found was built at the beginning of 2017, and at the moment we are not sure whether this implant has been used in the wild.

It seems to be Italian. Ars Technica speculates that it is related to Hacking Team:

That's not to say the malware is perfect. The various versions examined by Kaspersky Lab contained several artifacts that provide valuable clues about the people who may have developed and maintained the code. Traces include the domain name, which was registered by Italian IT firm Negg International. Negg officials didn't respond to an email requesting comment for this post. The malware may be filling a void left after the epic hack in 2015 of Hacking Team, another Italy-based developer of spyware.

BoingBoing post.

Posted on January 22, 2018 at 12:06 PM24 Comments

Dark Caracal: Global Espionage Malware from Lebanon

The EFF and Lookout are reporting on a new piece of spyware operating out of Lebanon. It primarily targets mobile devices compromised by fake versions of secure messaging clients like Signal and WhatsApp.

From the Lookout announcement:

Dark Caracal has operated a series of multi-platform campaigns starting from at least January 2012, according to our research. The campaigns span across 21+ countries and thousands of victims. Types of data stolen include documents, call records, audio recordings, secure messaging client content, contact information, text messages, photos, and account data. We believe this actor is operating their campaigns from a building belonging to the Lebanese General Security Directorate (GDGS) in Beirut.

It looks like a complex infrastructure that's been well-developed, and continually upgraded and maintained. It appears that a cyberweapons arms manufacturer is selling this tool to different countries. From the full report:

Dark Caracal is using the same infrastructure as was previously seen in the Operation Manul campaign, which targeted journalists, lawyers, and dissidents critical of the government of Kazakhstan.

There's a lot in the full report. It's worth reading.

Three news articles.

Posted on January 22, 2018 at 6:38 AM14 Comments

Friday Squid Blogging: Te Papa Colossal Squid Exhibition Is Being Renovated

The New Zealand home of the colossal squid exhibit is behind renovated.

As usual, you can also use this squid post to talk about the security stories in the news that I haven't covered.

Read my blog posting guidelines here.

Posted on January 19, 2018 at 4:48 PM115 Comments

Security Breaches Don't Affect Stock Price

Interesting research: "Long-term market implications of data breaches, not," by Russell Lange and Eric W. Burger.

Abstract: This report assesses the impact disclosure of data breaches has on the total returns and volatility of the affected companies' stock, with a focus on the results relative to the performance of the firms' peer industries, as represented through selected indices rather than the market as a whole. Financial performance is considered over a range of dates from 3 days post-breach through 6 months post-breach, in order to provide a longer-term perspective on the impact of the breach announcement.

Key findings:

  • While the difference in stock price between the sampled breached companies and their peers was negative (1.13%) in the first 3 days following announcement of a breach, by the 14th day the return difference had rebounded to + 0.05%, and on average remained positive through the period assessed.

  • For the differences in the breached companies' betas and the beta of their peer sets, the differences in the means of 8 months pre-breach versus post-breach was not meaningful at 90, 180, and 360 day post-breach periods.

  • For the differences in the breached companies' beta correlations against the peer indices pre- and post-breach, the difference in the means of the rolling 60 day correlation 8 months pre- breach versus post-breach was not meaningful at 90, 180, and 360 day post-breach periods.

  • In regression analysis, use of the number of accessed records, date, data sensitivity, and malicious versus accidental leak as variables failed to yield an R2 greater than 16.15% for response variables of 3, 14, 60, and 90 day return differential, excess beta differential, and rolling beta correlation differential, indicating that the financial impact on breached companies was highly idiosyncratic.

  • Based on returns, the most impacted industries at the 3 day post-breach date were U.S. Financial Services, Transportation, and Global Telecom. At the 90 day post-breach date, the three most impacted industries were U.S. Financial Services, U.S. Healthcare, and Global Telecom.

The market isn't going to fix this. If we want better security, we need to regulate the market.

Note: The article is behind a paywall. An older version is here. A similar article is here.

Posted on January 19, 2018 at 6:06 AM25 Comments

Article from a Former Chinese PLA General on Cyber Sovereignty

Interesting article by Major General Hao Yeli, Chinese People's Liberation Army (ret.), a senior advisor at the China International Institute for Strategic Society, Vice President of China Institute for Innovation and Development Strategy, and the Chair of the Guanchao Cyber Forum.

Against the background of globalization and the internet era, the emerging cyber sovereignty concept calls for breaking through the limitations of physical space and avoiding misunderstandings based on perceptions of binary opposition. Reinforcing a cyberspace community with a common destiny, it reconciles the tension between exclusivity and transferability, leading to a comprehensive perspective. China insists on its cyber sovereignty, meanwhile, it transfers segments of its cyber sovereignty reasonably. China rightly attaches importance to its national security, meanwhile, it promotes international cooperation and open development.

China has never been opposed to multi-party governance when appropriate, but rejects the denial of government's proper role and responsibilities with respect to major issues. The multilateral and multiparty models are complementary rather than exclusive. Governments and multi-stakeholders can play different leading roles at the different levels of cyberspace.

In the internet era, the law of the jungle should give way to solidarity and shared responsibilities. Restricted connections should give way to openness and sharing. Intolerance should be replaced by understanding. And unilateral values should yield to respect for differences while recognizing the importance of diversity.

Posted on January 17, 2018 at 6:23 AM69 Comments

Jim Risen Writes about Reporting Government Secrets

Jim Risen writes a long and interesting article about his battles with the US government and the New York Times to report government secrets.

Posted on January 16, 2018 at 6:58 AM37 Comments

Fighting Ransomware

No More Ransom is a central repository of keys and applications for ransomware, so people can recover their data without paying. It's not complete, of course, but is pretty good against older strains of ransomware. The site is a joint effort by Europol, the Dutch police, Kaspersky, and McAfee.

Posted on January 15, 2018 at 6:43 AM19 Comments

Friday Squid Blogging: Japanese "Dude Food" Includes Squid

This seems to be a trend.

As usual, you can also use this squid post to talk about the security stories in the news that I haven't covered.

Read my blog posting guidelines here.

Posted on January 12, 2018 at 4:12 PM122 Comments

Fingerprinting Digital Documents

In this era of electronic leakers, remember that zero-width spaces and homoglyph substitution can fingerprint individual instances of files.

Posted on January 11, 2018 at 12:50 PM45 Comments

Yet Another FBI Proposal for Insecure Communications

Deputy Attorney General Rosenstein has given talks where he proposes that tech companies decrease their communications and device security for the benefit of the FBI. In a recent talk, his idea is that tech companies just save a copy of the plaintext:

Law enforcement can also partner with private industry to address a problem we call "Going Dark." Technology increasingly frustrates traditional law enforcement efforts to collect evidence needed to protect public safety and solve crime. For example, many instant-messaging services now encrypt messages by default. The prevent the police from reading those messages, even if an impartial judge approves their interception.

The problem is especially critical because electronic evidence is necessary for both the investigation of a cyber incident and the prosecution of the perpetrator. If we cannot access data even with lawful process, we are unable to do our job. Our ability to secure systems and prosecute criminals depends on our ability to gather evidence.

I encourage you to carefully consider your company's interests and how you can work cooperatively with us. Although encryption can help secure your data, it may also prevent law enforcement agencies from protecting your data.

Encryption serves a valuable purpose. It is a foundational element of data security and essential to safeguarding data against cyber-attacks. It is critical to the growth and flourishing of the digital economy, and we support it. I support strong and responsible encryption.

I simply maintain that companies should retain the capability to provide the government unencrypted copies of communications and data stored on devices, when a court orders them to do so.

Responsible encryption is effective secure encryption, coupled with access capabilities. We know encryption can include safeguards. For example, there are systems that include central management of security keys and operating system updates; scanning of content, like your e-mails, for advertising purposes; simulcast of messages to multiple destinations at once; and key recovery when a user forgets the password to decrypt a laptop. No one calls any of those functions a "backdoor." In fact, those very capabilities are marketed and sought out.

I do not believe that the government should mandate a specific means of ensuring access. The government does not need to micromanage the engineering.

The question is whether to require a particular goal: When a court issues a search warrant or wiretap order to collect evidence of crime, the company should be able to help. The government does not need to hold the key.

Rosenstein is right that many services like Gmail naturally keep plaintext in the cloud. This is something we pointed out in our 2016 paper: "Don't Panic." But forcing companies to build an alternate means to access the plaintext that the user can't control is an enormous vulnerability.

Posted on January 11, 2018 at 7:05 AM160 Comments

Susan Landau's New Book: Listening In

Susan Landau has written a terrific book on cybersecurity threats and why we need strong crypto. Listening In: Cybersecurity in an Insecure Age. It's based in part on her 2016 Congressional testimony in the Apple/FBI case; it examines how the Digital Revolution has transformed society, and how law enforcement needs to -- and can -- adjust to the new realities. The book is accessible to techies and non-techies alike, and is strongly recommended.

And if you've already read it, give it a review on Amazon. Reviews sell books, and this one needs more of them.

Posted on January 10, 2018 at 1:42 PM18 Comments

Daniel Miessler on My Writings about IoT Security

Daniel Miessler criticizes my writings about IoT security:

I know it's super cool to scream about how IoT is insecure, how it's dumb to hook up everyday objects like houses and cars and locks to the internet, how bad things can get, and I know it's fun to be invited to talk about how everything is doom and gloom.

I absolutely respect Bruce Schneier a lot for what he's contributed to InfoSec, which makes me that much more disappointed with this kind of position from him.

InfoSec is full of those people, and it's beneath people like Bruce to add their voices to theirs. Everyone paying attention already knows it's going to be a soup sandwich -- a carnival of horrors -- a tragedy of mistakes and abuses of trust.

It's obvious. Not interesting. Not novel. Obvious. But obvious or not, all these things are still going to happen.

I actually agree with everything in his essay. "We should obviously try to minimize the risks, but we don't do that by trying to shout down the entire enterprise." Yes, definitely.

I don't think the IoT must be stopped. I do think that the risks are considerable, and will increase as these systems become more pervasive and susceptible to class breaks. And I'm trying to write a book that will help navigate this. I don't think I'm the prophet of doom, and don't want to come across that way. I'll give the manuscript another read with that in mind.

Posted on January 9, 2018 at 3:26 PM70 Comments

NSA Morale

The Washington Post is reporting that poor morale at the NSA is causing a significant talent shortage. A November New York Times article said much the same thing.

The articles point to many factors: the recent reorganization, low pay, and the various leaks. I have been saying for a while that the Shadow Brokers leaks have been much more damaging to the NSA -- both to morale and operating capabilities -- than Edward Snowden. I think it'll take most of a decade for them to recover.

Posted on January 9, 2018 at 5:58 AM110 Comments

Friday Squid Blogging: How the Optic Lobe Controls Squid Camouflage

Experiments on the oval squid.

As usual, you can also use this squid post to talk about the security stories in the news that I haven't covered.

Read my blog posting guidelines here.

Posted on January 5, 2018 at 4:42 PM98 Comments

Spectre and Meltdown Attacks Against Microprocessors

The security of pretty much every computer on the planet has just gotten a lot worse, and the only real solution -- which of course is not a solution -- is to throw them all away and buy new ones.

On Wednesday, researchers just announced a series of major security vulnerabilities in the microprocessors at the heart of the world's computers for the past 15-20 years. They've been named Spectre and Meltdown, and they have to do with manipulating different ways processors optimize performance by rearranging the order of instructions or performing different instructions in parallel. An attacker who controls one process on a system can use the vulnerabilities to steal secrets elsewhere on the computer. (The research papers are here and here.)

This means that a malicious app on your phone could steal data from your other apps. Or a malicious program on your computer -- maybe one running in a browser window from that sketchy site you're visiting, or as a result of a phishing attack -- can steal data elsewhere on your machine. Cloud services, which often share machines amongst several customers, are especially vulnerable. This affects corporate applications running on cloud infrastructure, and end-user cloud applications like Google Drive. Someone can run a process in the cloud and steal data from every other user on the same hardware.

Information about these flaws has been secretly circulating amongst the major IT companies for months as they researched the ramifications and coordinated updates. The details were supposed to be released next week, but the story broke early and everyone is scrambling. By now all the major cloud vendors have patched their systems against the vulnerabilities that can be patched against.

"Throw it away and buy a new one" is ridiculous security advice, but it's what US-CERT recommends. It is also unworkable. The problem is that there isn't anything to buy that isn't vulnerable. Pretty much every major processor made in the past 20 years is vulnerable to some flavor of these vulnerabilities. Patching against Meltdown can degrade performance by almost a third. And there's no patch for Spectre; the microprocessors have to be redesigned to prevent the attack, and that will take years. (Here's a running list of who's patched what.)

This is bad, but expect it more and more. Several trends are converging in a way that makes our current system of patching security vulnerabilities harder to implement.

The first is that these vulnerabilities affect embedded computers in consumer devices. Unlike our computers and phones, these systems are designed and produced at a lower profit margin with less engineering expertise. There aren't security teams on call to write patches, and there often aren't mechanisms to push patches onto the devices. We're already seeing this with home routers, digital video recorders, and webcams. The vulnerability that allowed them to be taken over by the Mirai botnet last August simply can't be fixed.

The second is that some of the patches require updating the computer's firmware. This is much harder to walk consumers through, and is more likely to permanently brick the device if something goes wrong. It also requires more coordination. In November, Intel released a firmware update to fix a vulnerability in its Management Engine (ME): another flaw in its microprocessors. But it couldn't get that update directly to users; it had to work with the individual hardware companies, and some of them just weren't capable of getting the update to their customers.

We're already seeing this. Some patches require users to disable the computer's password, which means organizations can't automate the patch. Some antivirus software blocks the patch, or -- worse -- crashes the computer. This results in a three-step process: patch your antivirus software, patch your operating system, and then patch the computer's firmware.

The final reason is the nature of these vulnerabilities themselves. These aren't normal software vulnerabilities, where a patch fixes the problem and everyone can move on. These vulnerabilities are in the fundamentals of how the microprocessor operates.

It shouldn't be surprising that microprocessor designers have been building insecure hardware for 20 years. What's surprising is that it took 20 years to discover it. In their rush to make computers faster, they weren't thinking about security. They didn't have the expertise to find these vulnerabilities. And those who did were too busy finding normal software vulnerabilities to examine microprocessors. Security researchers are starting to look more closely at these systems, so expect to hear about more vulnerabilities along these lines.

Spectre and Meltdown are pretty catastrophic vulnerabilities, but they only affect the confidentiality of data. Now that they -- and the research into the Intel ME vulnerability -- have shown researchers where to look, more is coming -- and what they'll find will be worse than either Spectre or Meltdown. There will be vulnerabilities that will allow attackers to manipulate or delete data across processes, potentially fatal in the computers controlling our cars or implanted medical devices. These will be similarly impossible to fix, and the only strategy will be to throw our devices away and buy new ones.

This isn't to say you should immediately turn your computers and phones off and not use them for a few years. For the average user, this is just another attack method amongst many. All the major vendors are working on patches and workarounds for the attacks they can mitigate. All the normal security advice still applies: watch for phishing attacks, don't click on strange e-mail attachments, don't visit sketchy websites that might run malware on your browser, patch your systems regularly, and generally be careful on the Internet.

You probably won't notice that performance hit once Meltdown is patched, except maybe in backup programs and networking applications. Embedded systems that do only one task, like your programmable thermostat or the computer in your refrigerator, are unaffected. Small microprocessors that don't do all of the vulnerable fancy performance tricks are unaffected. Browsers will figure out how to mitigate this in software. Overall, the security of the average Internet-of-Things device is so bad that this attack is in the noise compared to the previously known risks.

It's a much bigger problem for cloud vendors; the performance hit will be expensive, but I expect that they'll figure out some clever way of detecting and blocking the attacks. All in all, as bad as Spectre and Meltdown are, I think we got lucky.

But more are coming, and they'll be worse. 2018 will be the year of microprocessor vulnerabilities, and it's going to be a wild ride.

Note: A shorter version of this essay previously appeared on My previous blog post on this topic contains additional links.

Posted on January 5, 2018 at 2:22 PM133 Comments

New Book Coming in September: "Click Here to Kill Everybody"

My next book is still on track for a September 2018 publication. Norton is still the publisher. The title is now Click Here to Kill Everybody: Peril and Promise on a Hyperconnected Planet, which I generally refer to as CH2KE.

The table of contents has changed since I last blogged about this, and it now looks like this:

  • Introduction: Everything is Becoming a Computer
  • Part 1: The Trends
    • 1. Computers are Still Hard to Secure
    • 2. Everyone Favors Insecurity
    • 3. Autonomy and Physical Agency Bring New Dangers
    • 4. Patching is Failing as a Security Paradigm
    • 5. Authentication and Identification are Getting Harder
    • 6. Risks are Becoming Catastrophic
  • Part 2: The Solutions
    • 7. What a Secure Internet+ Looks Like
    • 8. How We Can Secure the Internet+
    • 9. Government is Who Enables Security
    • 10. How Government Can Prioritize Defense Over Offense
    • 11. What's Likely to Happen, and What We Can Do in Response
    • 12. Where Policy Can Go Wrong
    • 13. How to Engender Trust on the Internet+
  • Conclusion: Technology and Policy, Together

Two questions for everyone.

1. I'm not really happy with the subtitle. It needs to be descriptive, to counterbalance the admittedly clickbait title. It also needs to telegraph: "everyone needs to read this book." I'm taking suggestions.

2. In the book I need a word for the Internet plus the things connected to it plus all the data and processing in the cloud. I'm using the word "Internet+," and I'm not really happy with it. I don't want to invent a new word, but I need to strongly signal that what's coming is much more than just the Internet -- and I can't find any existing word. Again, I'm taking suggestions.

Posted on January 5, 2018 at 12:45 PM284 Comments

Detecting Adblocker Blockers

Interesting research on the prevalence of adblock blockers: "Measuring and Disrupting Anti-Adblockers Using Differential Execution Analysis":

Abstract: Millions of people use adblockers to remove intrusive and malicious ads as well as protect themselves against tracking and pervasive surveillance. Online publishers consider adblockers a major threat to the ad-powered "free" Web. They have started to retaliate against adblockers by employing anti-adblockers which can detect and stop adblock users. To counter this retaliation, adblockers in turn try to detect and filter anti-adblocking scripts. This back and forth has prompted an escalating arms race between adblockers and anti-adblockers.

We want to develop a comprehensive understanding of anti-adblockers, with the ultimate aim of enabling adblockers to bypass state-of-the-art anti-adblockers. In this paper, we present a differential execution analysis to automatically detect and analyze anti-adblockers. At a high level, we collect execution traces by visiting a website with and without adblockers. Through differential execution analysis, we are able to pinpoint the conditions that lead to the differences caused by anti-adblocking code. Using our system, we detect anti-adblockers on 30.5% of the Alexa top-10K websites which is 5-52 times more than reported in prior literature. Unlike prior work which is limited to detecting visible reactions (e.g., warning messages) by anti-adblockers, our system can discover attempts to detect adblockers even when there is no visible reaction. From manually checking one third of the detected websites, we find that the websites that have no visible reactions constitute over 90% of the cases, completely dominating the ones that have visible warning messages. Finally, based on our findings, we further develop JavaScript rewriting and API hooking based solutions (the latter implemented as a Chrome extension) to help adblockers bypass state-of-the-art anti-adblockers.

News article.

Posted on January 5, 2018 at 9:00 AM33 Comments

Spectre and Meltdown Attacks

After a week or so of rumors, everyone is now reporting about the Spectre and Meltdown attacks against pretty much every modern processor out there.

These are side-channel attacks where one process can spy on other processes. They affect computers where an untrusted browser window can execute code, phones that have multiple apps running at the same time, and cloud computing networks that run lots of different processes at once. Fixing them either requires a patch that results in a major performance hit, or is impossible and requires a re-architecture of conditional execution in future CPU chips.

I'll be writing something for publication over the next few days. This post is basically just a link repository.

EDITED TO ADD: Good technical explanation. And a Slashdot thread.

EDITED TO ADD (1/5): Another good technical description. And how the exploits work through browsers. A rundown of what vendors are doing. Nicholas Weaver on its effects on individual computers.

EDITED TO ADD (1/7): xkcd.

EDITED TO ADD (1/10): Another good technical description.

Posted on January 4, 2018 at 6:28 AM81 Comments

Tamper-Detection App for Android

Edward Snowden and Nathan Freitas have created an Android app that detects when it's being tampered with. The basic idea is to put the app on a second phone and put the app on or near something important, like your laptop. The app can then text you -- and also record audio and video -- when something happens around it: when it's moved, when the lighting changes, and so on. This gives you some protection against the "evil maid attack" against laptops.

Micah Lee has a good article about the app, including some caveats about its use and security.

Posted on January 3, 2018 at 6:17 AM41 Comments

Fake Santa Surveillance Camera

Reka makes a "decorative Santa cam," meaning that it's not a real camera. Instead, it just gets children used to being under constant surveillance.

Our Santa Cam has a cute Father Christmas and mistletoe design, and a red, flashing LED light which will make the most logical kids suspend their disbelief and start to believe!

Posted on January 2, 2018 at 6:51 AM23 Comments

Photo of Bruce Schneier by Per Ervland.

Schneier on Security is a personal website. Opinions expressed are not necessarily those of IBM Resilient.