Entries Tagged "patching"

Page 1 of 12

BlackLotus Malware Hijacks Windows Secure Boot Process

Researchers have discovered malware that “can hijack a computer’s boot process even when Secure Boot and other advanced protections are enabled and running on fully updated versions of Windows.”

Dubbed BlackLotus, the malware is what’s known as a UEFI bootkit. These sophisticated pieces of malware target the UEFI—short for Unified Extensible Firmware Interface—the low-level and complex chain of firmware responsible for booting up virtually every modern computer. As the mechanism that bridges a PC’s device firmware with its operating system, the UEFI is an OS in its own right. It’s located in an SPI-connected flash storage chip soldered onto the computer motherboard, making it difficult to inspect or patch. Previously discovered bootkits such as CosmicStrand, MosaicRegressor, and MoonBounce work by targeting the UEFI firmware stored in the flash storage chip. Others, including BlackLotus, target the software stored in the EFI system partition.

Because the UEFI is the first thing to run when a computer is turned on, it influences the OS, security apps, and all other software that follows. These traits make the UEFI the perfect place to launch malware. When successful, UEFI bootkits disable OS security mechanisms and ensure that a computer remains infected with stealthy malware that runs at the kernel mode or user mode, even after the operating system is reinstalled or a hard drive is replaced.

ESET has an analysis:

The number of UEFI vulnerabilities discovered in recent years and the failures in patching them or revoking vulnerable binaries within a reasonable time window hasn’t gone unnoticed by threat actors. As a result, the first publicly known UEFI bootkit bypassing the essential platform security feature—UEFI Secure Boot—is now a reality. In this blogpost we present the first public analysis of this UEFI bootkit, which is capable of running on even fully-up-to-date Windows 11 systems with UEFI Secure Boot enabled. Functionality of the bootkit and its individual features leads us to believe that we are dealing with a bootkit known as BlackLotus, the UEFI bootkit being sold on hacking forums for $5,000 since at least October 2022.

[…]

  • It’s capable of running on the latest, fully patched Windows 11 systems with UEFI Secure Boot enabled.
  • It exploits a more than one year old vulnerability (CVE-2022-21894) to bypass UEFI Secure Boot and set up persistence for the bootkit. This is the first publicly known, in-the-wild abuse of this vulnerability.
  • Although the vulnerability was fixed in Microsoft’s January 2022 update, its exploitation is still possible as the affected, validly signed binaries have still not been added to the UEFI revocation list. BlackLotus takes advantage of this, bringing its own copies of legitimate—but vulnerable—binaries to the system in order to exploit the vulnerability.
  • It’s capable of disabling OS security mechanisms such as BitLocker, HVCI, and Windows Defender.
  • Once installed, the bootkit’s main goal is to deploy a kernel driver (which, among other things, protects the bootkit from removal), and an HTTP downloader responsible for communication with the C&C and capable of loading additional user-mode or kernel-mode payloads.

This is impressive stuff.

Posted on March 8, 2023 at 6:11 AMView Comments

Arresting IT Administrators

This is one way of ensuring that IT keeps up with patches:

Albanian prosecutors on Wednesday asked for the house arrest of five public employees they blame for not protecting the country from a cyberattack by alleged Iranian hackers.

Prosecutors said the five IT officials of the public administration department had failed to check the security of the system and update it with the most recent antivirus software.

The next step would be to arrest managers at software companies for not releasing patches fast enough. And maybe programmers for writing buggy code. I don’t know where this line of thinking ends.

Posted on December 27, 2022 at 7:01 AMView Comments

Critical Microsoft Code-Execution Vulnerability

A critical code-execution vulnerability in Microsoft Windows was patched in September. It seems that researchers just realized how serious it was (and is):

Like EternalBlue, CVE-2022-37958, as the latest vulnerability is tracked, allows attackers to execute malicious code with no authentication required. Also, like EternalBlue, it’s wormable, meaning that a single exploit can trigger a chain reaction of self-replicating follow-on exploits on other vulnerable systems. The wormability of EternalBlue allowed WannaCry and several other attacks to spread across the world in a matter of minutes with no user interaction required.

But unlike EternalBlue, which could be exploited when using only the SMB, or server message block, a protocol for file and printer sharing and similar network activities, this latest vulnerability is present in a much broader range of network protocols, giving attackers more flexibility than they had when exploiting the older vulnerability.

[…]

Microsoft fixed CVE-2022-37958 in September during its monthly Patch Tuesday rollout of security fixes. At the time, however, Microsoft researchers believed the vulnerability allowed only the disclosure of potentially sensitive information. As such, Microsoft gave the vulnerability a designation of “important.” In the routine course of analyzing vulnerabilities after they’re patched, Palmiotti discovered it allowed for remote code execution in much the way EternalBlue did. Last week, Microsoft revised the designation to critical and gave it a severity rating of 8.1, the same given to EternalBlue.

Posted on December 22, 2022 at 7:01 AMView Comments

Apple Patches iPhone Zero-Day

The most recent iPhone update—to version 16.2—patches a zero-day vulnerability that “may have been actively exploited against versions of iOS released before iOS 15.1.”

News:

Apple said security researchers at Google’s Threat Analysis Group, which investigates nation state-backed spyware, hacking and cyberattacks, discovered and reported the WebKit bug.

WebKit bugs are often exploited when a person visits a malicious domain in their browser (or via the in-app browser). It’s not uncommon for bad actors to find vulnerabilities that target WebKit as a way to break into the device’s operating system and the user’s private data. WebKit bugs can be “chained” to other vulnerabilities to break through multiple layers of a device’s defenses.

Posted on December 16, 2022 at 7:04 AMView Comments

Apple Only Commits to Patching Latest OS Version

People have suspected this for a while, but Apple has made it official. It only commits to fully patching the latest version of its OS, even though it claims to support older versions.

From ArsTechnica:

In other words, while Apple will provide security-related updates for older versions of its operating systems, only the most recent upgrades will receive updates for every security problem Apple knows about. Apple currently provides security updates to macOS 11 Big Sur and macOS 12 Monterey alongside the newly released macOS Ventura, and in the past, it has released security updates for older iOS versions for devices that can’t install the latest upgrades.

This confirms something that independent security researchers have been aware of for a while but that Apple hasn’t publicly articulated before. Intego Chief Security Analyst Joshua Long has tracked the CVEs patched by different macOS and iOS updates for years and generally found that bugs patched in the newest OS versions can go months before being patched in older (but still ostensibly “supported”) versions, when they’re patched at all.

Posted on October 31, 2022 at 6:29 AMView Comments

Critical Vulnerability in Open SSL

There are no details yet, but it’s really important that you patch Open SSL 3.x when the new version comes out on Tuesday.

How bad is “Critical”? According to OpenSSL, an issue of critical severity affects common configurations and is also likely exploitable.

It’s likely to be abused to disclose server memory contents, and potentially reveal user details, and could be easily exploited remotely to compromise server private keys or execute code execute remotely. In other words, pretty much everything you don’t want happening on your production systems.

Slashdot thread.

Posted on October 28, 2022 at 8:12 AMView Comments

Responsible Disclosure for Cryptocurrency Security

Stewart Baker discusses why the industry-norm responsible disclosure for software vulnerabilities fails for cryptocurrency software.

Why can’t the cryptocurrency industry solve the problem the way the software and hardware industries do, by patching and updating security as flaws are found? Two reasons: First, many customers don’t have an ongoing relationship with the hardware and software providers that protect their funds­—nor do they have an incentive to update security on a regular basis. Turning to a new security provider or using updated software creates risks; leaving everything the way it was feels safer. So users won’t be rushing to pay for and install new security patches.

Second, cryptocurrency is famously and deliberately decentralized, anonymized, and low friction. That means that the company responsible for hardware or software security may have no way to identify who used its product, or to get the patch to those users. It also means that many wallets with security flaws will be publicly accessible, protected only by an elaborate password. Once word of the flaw leaks, the password can be reverse engineered by anyone, and the legitimate owners are likely to find themselves in a race to move their assets before the thieves do. Even in the software industry, hackers routinely reverse engineer Microsoft’s patches to find the security flaws they fix and then try to exploit them before the patches have been fully installed.

He doesn’t have any good ideas to fix this. I don’t either. Just add it to the pile of blockchain’s many problems.

Posted on September 9, 2022 at 8:33 AMView Comments

Java Cryptography Implementation Mistake Allows Digital-Signature Forgeries

Interesting implementation mistake:

The vulnerability, which Oracle patched on Tuesday, affects the company’s implementation of the Elliptic Curve Digital Signature Algorithm in Java versions 15 and above. ECDSA is an algorithm that uses the principles of elliptic curve cryptography to authenticate messages digitally.

[…]

ECDSA signatures rely on a pseudo-random number, typically notated as K, that’s used to derive two additional numbers, R and S. To verify a signature as valid, a party must check the equation involving R and S, the signer’s public key, and a cryptographic hash of the message. When both sides of the equation are equal, the signature is valid.

[…]

For the process to work correctly, neither R nor S can ever be a zero. That’s because one side of the equation is R, and the other is multiplied by R and a value from S. If the values are both 0, the verification check translates to 0 = 0 X (other values from the private key and hash), which will be true regardless of the additional values. That means an adversary only needs to submit a blank signature to pass the verification check successfully.

Madden wrote:

Guess which check Java forgot?

That’s right. Java’s implementation of ECDSA signature verification didn’t check if R or S were zero, so you could produce a signature value in which they are both 0 (appropriately encoded) and Java would accept it as a valid signature for any message and for any public key. The digital equivalent of a blank ID card.

More details.

Posted on April 22, 2022 at 7:09 AMView Comments

1 2 3 12

Sidebar photo of Bruce Schneier by Joe MacInnis.