Latest

Attacking Machine Learning Systems

The field of machine learning (ML) security—and corresponding adversarial ML—is rapidly advancing as researchers develop sophisticated techniques to perturb, disrupt, or steal the ML model or data. It’s a heady time; because we know so little about the security of these systems, there are many opportunities for new researchers to publish in this field. In many ways, this circumstance reminds me of the cryptanalysis field in the 1990. And there is a lesson in that similarity: the complex mathematical attacks make for good academic papers, but we mustn’t lose sight of the fact that insecure software will be the likely attack vector for most ML systems.

We are amazed by real-world demonstrations of adversarial attacks on ML systems, such as a 3D-printed object that looks like a turtle but is recognized (from any orientation) by the ML system as a gun. Or adding a few stickers that look like smudges to a stop sign so that it is recognized by a state-of-the-art system as a 45 mi/h speed limit sign. But what if, instead, somebody hacked into the system and just switched the labels for “gun” and “turtle” or swapped “stop” and “45 mi/h”? Systems can only match images with human-provided labels, so the software would never notice the switch. That is far easier and will remain a problem even if systems are developed that are robust to those adversarial attacks.

At their core, modern ML systems have complex mathematical models that use training data to become competent at a task. And while there are new risks inherent in the ML model, all of that complexity still runs in software. Training data are still stored in memory somewhere. And all of that is on a computer, on a network, and attached to the Internet. Like everything else, these systems will be hacked through vulnerabilities in those more conventional parts of the system.

This shouldn’t come as a surprise to anyone who has been working with Internet security. Cryptography has similar vulnerabilities. There is a robust field of cryptanalysis: the mathematics of code breaking. Over the last few decades, we in the academic world have developed a variety of cryptanalytic techniques. We have broken ciphers we previously thought secure. This research has, in turn, informed the design of cryptographic algorithms. The classified world of the NSA and its foreign counterparts have been doing the same thing for far longer. But aside from some special cases and unique circumstances, that’s not how encryption systems are exploited in practice. Outside of academic papers, cryptosystems are largely bypassed because everything around the cryptography is much less secure.

I wrote this in my book, Data and Goliath:

The problem is that encryption is just a bunch of math, and math has no agency. To turn that encryption math into something that can actually provide some security for you, it has to be written in computer code. And that code needs to run on a computer: one with hardware, an operating system, and other software. And that computer needs to be operated by a person and be on a network. All of those things will invariably introduce vulnerabilities that undermine the perfection of the mathematics…

This remains true even for pretty weak cryptography. It is much easier to find an exploitable software vulnerability than it is to find a cryptographic weakness. Even cryptographic algorithms that we in the academic community regard as “broken”—meaning there are attacks that are more efficient than brute force—are usable in the real world because the difficulty of breaking the mathematics repeatedly and at scale is much greater than the difficulty of breaking the computer system that the math is running on.

ML systems are similar. Systems that are vulnerable to model stealing through the careful construction of queries are more vulnerable to model stealing by hacking into the computers they’re stored in. Systems that are vulnerable to model inversion—this is where attackers recover the training data through carefully constructed queries—are much more vulnerable to attacks that take advantage of unpatched vulnerabilities.

But while security is only as strong as the weakest link, this doesn’t mean we can ignore either cryptography or ML security. Here, our experience with cryptography can serve as a guide. Cryptographic attacks have different characteristics than software and network attacks, something largely shared with ML attacks. Cryptographic attacks can be passive. That is, attackers who can recover the plaintext from nothing other than the ciphertext can eavesdrop on the communications channel, collect all of the encrypted traffic, and decrypt it on their own systems at their own pace, perhaps in a giant server farm in Utah. This is bulk surveillance and can easily operate on this massive scale.

On the other hand, computer hacking has to be conducted one target computer at a time. Sure, you can develop tools that can be used again and again. But you still need the time and expertise to deploy those tools against your targets, and you have to do so individually. This means that any attacker has to prioritize. So while the NSA has the expertise necessary to hack into everyone’s computer, it doesn’t have the budget to do so. Most of us are simply too low on its priorities list to ever get hacked. And that’s the real point of strong cryptography: it forces attackers like the NSA to prioritize.

This analogy only goes so far. ML is not anywhere near as mathematically sound as cryptography. Right now, it is a sloppy misunderstood mess: hack after hack, kludge after kludge, built on top of each other with some data dependency thrown in. Directly attacking an ML system with a model inversion attack or a perturbation attack isn’t as passive as eavesdropping on an encrypted communications channel, but it’s using the ML system as intended, albeit for unintended purposes. It’s much safer than actively hacking the network and the computer that the ML system is running on. And while it doesn’t scale as well as cryptanalytic attacks can—and there likely will be a far greater variety of ML systems than encryption algorithms—it has the potential to scale better than one-at-a-time computer hacking does. So here again, good ML security denies attackers all of those attack vectors.

We’re still in the early days of studying ML security, and we don’t yet know the contours of ML security techniques. There are really smart people working on this and making impressive progress, and it’ll be years before we fully understand it. Attacks come easy, and defensive techniques are regularly broken soon after they’re made public. It was the same with cryptography in the 1990s, but eventually the science settled down as people better understood the interplay between attack and defense. So while Google, Amazon, Microsoft, and Tesla have all faced adversarial ML attacks on their production systems in the last three years, that’s not going to be the norm going forward.

All of this also means that our security for ML systems depends largely on the same conventional computer security techniques we’ve been using for decades. This includes writing vulnerability-free software, designing user interfaces that help resist social engineering, and building computer networks that aren’t full of holes. It’s the same risk-mitigation techniques that we’ve been living with for decades. That we’re still mediocre at it is cause for concern, with regard to both ML systems and computing in general.

I love cryptography and cryptanalysis. I love the elegance of the mathematics and the thrill of discovering a flaw—or even of reading and understanding a flaw that someone else discovered—in the mathematics. It feels like security in its purest form. Similarly, I am starting to love adversarial ML and ML security, and its tricks and techniques, for the same reasons.

I am not advocating that we stop developing new adversarial ML attacks. It teaches us about the systems being attacked and how they actually work. They are, in a sense, mechanisms for algorithmic understandability. Building secure ML systems is important research and something we in the security community should continue to do.

There is no such thing as a pure ML system. Every ML system is a hybrid of ML software and traditional software. And while ML systems bring new risks that we haven’t previously encountered, we need to recognize that the majority of attacks against these systems aren’t going to target the ML part. Security is only as strong as the weakest link. As bad as ML security is right now, it will improve as the science improves. And from then on, as in cryptography, the weakest link will be in the software surrounding the ML system.

This essay originally appeared in the May 2020 issue of IEEE Computer. I forgot to reprint it here.

Posted on February 6, 2023 at 6:02 AM6 Comments

A Hacker’s Mind News

A Hacker’s Mind will be published on Tuesday.

I have done a written interview and a podcast interview about the book. It’s been chosen as a “February 2023 Must-Read Book” by the Next Big Idea Club. And an “Editor’s Pick”—whatever that means—on Amazon.

There have been three reviews so far. I am hoping for more. And maybe even a published excerpt or two.

Amazon and others will start shipping the book on Tuesday. If you ordered a signed copy from me, it is already in the mail.

If you can leave a review somewhere, I would appreciate it.

Posted on February 3, 2023 at 3:03 PM1 Comments

Manipulating Weights in Face-Recognition AI Systems

Interesting research: “Facial Misrecognition Systems: Simple Weight Manipulations Force DNNs to Err Only on Specific Persons“:

Abstract: In this paper we describe how to plant novel types of backdoors in any facial recognition model based on the popular architecture of deep Siamese neural networks, by mathematically changing a small fraction of its weights (i.e., without using any additional training or optimization). These backdoors force the system to err only on specific persons which are preselected by the attacker. For example, we show how such a backdoored system can take any two images of a particular person and decide that they represent different persons (an anonymity attack), or take any two images of a particular pair of persons and decide that they represent the same person (a confusion attack), with almost no effect on the correctness of its decisions for other persons. Uniquely, we show that multiple backdoors can be independently installed by multiple attackers who may not be aware of each other’s existence with almost no interference.

We have experimentally verified the attacks on a FaceNet-based facial recognition system, which achieves SOTA accuracy on the standard LFW dataset of 99.35%. When we tried to individually anonymize ten celebrities, the network failed to recognize two of their images as being the same person in 96.97% to 98.29% of the time. When we tried to confuse between the extremely different looking Morgan Freeman and Scarlett Johansson, for example, their images were declared to be the same person in 91.51% of the time. For each type of backdoor, we sequentially installed multiple backdoors with minimal effect on the performance of each one (for example, anonymizing all ten celebrities on the same model reduced the success rate for each celebrity by no more than 0.91%). In all of our experiments, the benign accuracy of the network on other persons was degraded by no more than 0.48% (and in most cases, it remained above 99.30%).

It’s a weird attack. On the one hand, the attacker has access to the internals of the facial recognition system. On the other hand, this is a novel attack in that it manipulates internal weights to achieve a specific outcome. Given that we have no idea how those weights work, it’s an important result.

Posted on February 3, 2023 at 7:07 AM12 Comments

AIs as Computer Hackers

Hacker “Capture the Flag” has been a mainstay at hacker gatherings since the mid-1990s. It’s like the outdoor game, but played on computer networks. Teams of hackers defend their own computers while attacking other teams’. It’s a controlled setting for what computer hackers do in real life: finding and fixing vulnerabilities in their own systems and exploiting them in others’. It’s the software vulnerability lifecycle.

These days, dozens of teams from around the world compete in weekend-long marathon events held all over the world. People train for months. Winning is a big deal. If you’re into this sort of thing, it’s pretty much the most fun you can possibly have on the Internet without committing multiple felonies.

In 2016, DARPA ran a similarly styled event for artificial intelligence (AI). One hundred teams entered their systems into the Cyber Grand Challenge. After completing qualifying rounds, seven finalists competed at the DEFCON hacker convention in Las Vegas. The competition occurred in a specially designed test environment filled with custom software that had never been analyzed or tested. The AIs were given 10 hours to find vulnerabilities to exploit against the other AIs in the competition and to patch themselves against exploitation. A system called Mayhem, created by a team of Carnegie-Mellon computer security researchers, won. The researchers have since commercialized the technology, which is now busily defending networks for customers like the U.S. Department of Defense.

There was a traditional human–team capture-the-flag event at DEFCON that same year. Mayhem was invited to participate. It came in last overall, but it didn’t come in last in every category all of the time.

I figured it was only a matter of time. It would be the same story we’ve seen in so many other areas of AI: the games of chess and go, X-ray and disease diagnostics, writing fake news. AIs would improve every year because all of the core technologies are continually improving. Humans would largely stay the same because we remain humans even as our tools improve. Eventually, the AIs would routinely beat the humans. I guessed that it would take about a decade.

But now, five years later, I have no idea if that prediction is still on track. Inexplicably, DARPA never repeated the event. Research on the individual components of the software vulnerability lifecycle does continue. There’s an enormous amount of work being done on automatic vulnerability finding. Going through software code line by line is exactly the sort of tedious problem at which machine learning systems excel, if they can only be taught how to recognize a vulnerability. There is also work on automatic vulnerability exploitation and lots on automatic update and patching. Still, there is something uniquely powerful about a competition that puts all of the components together and tests them against others.

To see that in action, you have to go to China. Since 2017, China has held at least seven of these competitions—called Robot Hacking Games—many with multiple qualifying rounds. The first included one team each from the United States, Russia, and Ukraine. The rest have been Chinese only: teams from Chinese universities, teams from companies like Baidu and Tencent, teams from the military. Rules seem to vary. Sometimes human–AI hybrid teams compete.

Details of these events are few. They’re Chinese language only, which naturally limits what the West knows about them. I didn’t even know they existed until Dakota Cary, a research analyst at the Center for Security and Emerging Technology and a Chinese speaker, wrote a report about them a few months ago. And they’re increasingly hosted by the People’s Liberation Army, which presumably controls how much detail becomes public.

Some things we can infer. In 2016, none of the Cyber Grand Challenge teams used modern machine learning techniques. Certainly most of the Robot Hacking Games entrants are using them today. And the competitions encourage collaboration as well as competition between the teams. Presumably that accelerates advances in the field.

None of this is to say that real robot hackers are poised to attack us today, but I wish I could predict with some certainty when that day will come. In 2018, I wrote about how AI could change the attack/defense balance in cybersecurity. I said that it is impossible to know which side would benefit more but predicted that the technologies would benefit the defense more, at least in the short term. I wrote: “Defense is currently in a worse position than offense precisely because of the human components. Present-day attacks pit the relative advantages of computers and humans against the relative weaknesses of computers and humans. Computers moving into what are traditionally human areas will rebalance that equation.”

Unfortunately, it’s the People’s Liberation Army and not DARPA that will be the first to learn if I am right or wrong and how soon it matters.

This essay originally appeared in the January/February 2022 issue of IEEE Security & Privacy.

Posted on February 2, 2023 at 6:59 AM13 Comments

Passwords Are Terrible (Surprising No One)

This is the result of a security audit:

More than a fifth of the passwords protecting network accounts at the US Department of the Interior—including Password1234, Password1234!, and ChangeItN0w!—were weak enough to be cracked using standard methods, a recently published security audit of the agency found.

[…]

The results weren’t encouraging. In all, the auditors cracked 18,174—or 21 percent—­of the 85,944 cryptographic hashes they tested; 288 of the affected accounts had elevated privileges, and 362 of them belonged to senior government employees. In the first 90 minutes of testing, auditors cracked the hashes for 16 percent of the department’s user accounts.

The audit uncovered another security weakness—the failure to consistently implement multi-factor authentication (MFA). The failure extended to 25—­or 89 percent—­of 28 high-value assets (HVAs), which, when breached, have the potential to severely impact agency operations.

Original story:

To make their point, the watchdog spent less than $15,000 on building a password-cracking rig—a setup of a high-performance computer or several chained together ­- with the computing power designed to take on complex mathematical tasks, like recovering hashed passwords. Within the first 90 minutes, the watchdog was able to recover nearly 14,000 employee passwords, or about 16% of all department accounts, including passwords like ‘Polar_bear65’ and ‘Nationalparks2014!’.

Posted on February 1, 2023 at 7:08 AM77 Comments

Ransomware Payments Are Down

Chainalysis reports that worldwide ransomware payments were down in 2022.

Ransomware attackers extorted at least $456.8 million from victims in 2022, down from $765.6 million the year before.

As always, we have to caveat these findings by noting that the true totals are much higher, as there are cryptocurrency addresses controlled by ransomware attackers that have yet to be identified on the blockchain and incorporated into our data. When we published last year’s version of this report, for example, we had only identified $602 million in ransomware payments in 2021. Still, the trend is clear: Ransomware payments are significantly down.

However, that doesn’t mean attacks are down, or at least not as much as the drastic drop-off in payments would suggest. Instead, we believe that much of the decline is due to victim organizations increasingly refusing to pay ransomware attackers.

Posted on January 31, 2023 at 7:03 AM6 Comments

NIST Is Updating Its Cybersecurity Framework

NIST is planning a significant update of its Cybersecurity Framework. At this point, it’s asking for feedback and comments to its concept paper.

  1. Do the proposed changes reflect the current cybersecurity landscape (standards, risks, and technologies)?
  2. Are the proposed changes sufficient and appropriate? Are there other elements that should be considered under each area?
  3. Do the proposed changes support different use cases in various sectors, types, and sizes of organizations (and with varied capabilities, resources, and technologies)?
  4. Are there additional changes not covered here that should be considered?
  5. For those using CSF 1.1, would the proposed changes affect continued adoption of the Framework, and how so?
  6. For those not using the Framework, would the proposed changes affect the potential use of the Framework?

The NIST Cybersecurity Framework has turned out to be an excellent resource. If you use it at all, please help with version 2.0.

Posted on January 30, 2023 at 7:13 AM6 Comments

Kevin Mitnick Hacked California Law in 1983

Early in his career, Kevin Mitnick successfully hacked California law. He told me the story when he heard about my new book, which he partially recounts his 2012 book, Ghost in the Wires.

The setup is that he just discovered that there’s warrant for his arrest by the California Youth Authority, and he’s trying to figure out if there’s any way out of it.

As soon as I was settled, I looked in the Yellow Pages for the nearest law school, and spent the next few days and evenings there poring over the Welfare and Institutions Code, but without much hope.

Still, hey, “Where there’s a will…” I found a provision that said that for a nonviolent crime, the jurisdiction of the Juvenile Court expired either when the defendant turned twenty-one or two years after the commitment date, whichever occurred later. For me, that would mean two years from February 1983, when I had been sentenced to the three years and eight months.

Scratch, scratch. A little arithmetic told me that this would occur in about four months. I thought, What if I just disappear until their jurisdiction ends?

This was the Southwestern Law School in Los Angeles. This was a lot of manual research—no search engines in those days. He researched the relevant statutes, and case law that interpreted those statutes. He made copies of everything to hand to his attorney.

I called my attorney to try out the idea on him. His response sounded testy: “You’re absolutely wrong. It’s a fundamental principle of law that if a defendant disappears when there’s a warrant out for him, the time limit is tolled until he’s found, even if it’s years later.”

And he added, “You have to stop playing lawyer. I’m the lawyer. Let me do my job.”

I pleaded with him to look into it, which annoyed him, but he finally agreed. When I called back two days later, he had talked to my Parole Officer, Melvin Boyer, the compassionate guy who had gotten me transferred out of the dangerous jungle at LA County Jail. Boyer had told him, “Kevin is right. If he disappears until February 1985, there’ll be nothing we can do. At that point the warrant will expire, and he’ll be off the hook.”

So he moved to Northern California and lived under an assumed name for four months.

What’s interesting to me is how he approaches legal code in the same way a hacker approaches computer code: pouring over the details, looking for a bug—a mistake—leading to an exploitable vulnerability. And this was in the days before you could do any research online. He’s spending days in the law school library.

This is exactly the sort of thing I am writing about in A Hacker’s Mind. Legal code isn’t the same as computer code, but it’s a series of rules with inputs and outputs. And just like computer code, legal code has bugs. And some of those bugs are also vulnerabilities. And some of those vulnerabilities can be exploited—just as Mitnick learned.

Mitnick was a hacker. His attorney was not.

Posted on January 27, 2023 at 3:19 PM50 Comments

Sidebar photo of Bruce Schneier by Joe MacInnis.