Essays Tagged "IEEE Security & Privacy"

Page 1 of 4

Technologists vs. Policy Makers

  • Bruce Schneier
  • IEEE Security & Privacy
  • January/February 2020

Spanish translation

Sometime around 1993 or 1994, during the first Crypto Wars, I was part of a group of cryptography experts that went to Washington to advocate for strong encryption. Matt Blaze and Ron Rivest were with me; I don’t remember who else. We met with then Massachusetts Representative Ed Markey. (He didn’t become a senator until 2013.) Back then, he and Vermont Senator Patrick Leahy were the most knowledgeable on this issue and our biggest supporters against government backdoors. They still are.

Markey was against forcing encrypted phone providers to implement the NSA’s Clipper Chip in their devices, but wanted us to reach a compromise with the FBI regardless. This completely startled us techies, who thought having the right answer was enough. It was at that moment that I learned an important difference between technologists and policy makers. Technologists want solutions; policy makers want consensus…

Cybersecurity for the Public Interest

  • Bruce Schneier
  • IEEE Security & Privacy
  • January/February 2019

The Crypto Wars have been waging off-and-on for a quarter-century. On one side is law enforcement, which wants to be able to break encryption, to access devices and communications of terrorists and criminals. On the other are almost every cryptographer and computer security expert, repeatedly explaining that there’s no way to provide this capability without also weakening the security of every user of those devices and communications systems.

It’s an impassioned debate, acrimonious at times, but there are real technologies that can be brought to bear on the problem: key-escrow technologies, code obfuscation technologies, and backdoors with different properties. Pervasive surveillance capitalism—as practiced by the Internet companies that are already spying on everyone—matters. So does society’s underlying security needs. There is a security benefit to giving access to law enforcement, even though it would inevitably and invariably also give that access to others. However, there is also a security benefit of having these systems protected from all attackers, including law enforcement. These benefits are mutually exclusive. Which is more important, and to what degree?…

Cryptography after the Aliens Land

  • Bruce Schneier
  • IEEE Security & Privacy
  • September/October 2018

Quantum computing is a new way of computing—one that could allow humankind to perform computations that are simply impossible using today’s computing technologies. It allows for very fast searching, something that would break some of the encryption algorithms we use today. And it allows us to easily factor large numbers, something that would break the RSA cryptosystem for any key length.

This is why cryptographers are hard at work designing and analyzing “quantum-resistant” public-key algorithms. Currently, quantum computing is too nascent for cryptographers to be sure of what is secure and what isn’t. But even assuming aliens have developed the technology to its full potential, quantum computing doesn’t spell the end of the world for cryptography. Symmetric cryptography is easy to make quantum-resistant, and we’re working on quantum-resistant public-key algorithms. If public-key cryptography ends up being a temporary anomaly based on our mathematical knowledge and computational ability, we’ll still survive. And if some inconceivable alien technology can break all of cryptography, we still can have secrecy based on information theory—albeit with significant loss of capability…

Artificial Intelligence and the Attack/Defense Balance

  • Bruce Schneier
  • IEEE Security & Privacy
  • March/April 2018

Artificial intelligence technologies have the potential to upend the longstanding advantage that attack has over defense on the Internet. This has to do with the relative strengths and weaknesses of people and computers, how those all interplay in Internet security, and where AI technologies might change things.

You can divide Internet security tasks into two sets: what humans do well and what computers do well. Traditionally, computers excel at speed, scale, and scope. They can launch attacks in milliseconds and infect millions of computers. They can scan computer code to look for particular kinds of vulnerabilities, and data packets to identify particular kinds of attacks…

IoT Security: What’s Plan B?

  • Bruce Schneier
  • IEEE Security & Privacy
  • September/October 2017

In August, four US Senators introduced a bill designed to improve Internet of Things (IoT) security. The IoT Cybersecurity Improvement Act of 2017 is a modest piece of legislation. It doesn’t regulate the IoT market. It doesn’t single out any industries for particular attention, or force any companies to do anything. It doesn’t even modify the liability laws for embedded software. Companies can continue to sell IoT devices with whatever lousy security they want.

What the bill does do is leverage the government’s buying power to nudge the market: any IoT product that the government buys must meet minimum security standards. It requires vendors to ensure that devices can not only be patched but are patched in an authenticated and timely manner, don’t have unchangeable default passwords, and are free from known vulnerabilities. It’s about as low a security bar as you can set, and that it will considerably improve security speaks volumes about the current state of IoT security. (Full disclosure: I helped draft some of the bill’s security requirements.)…

Stop Trying to Fix the User

  • Bruce Schneier
  • IEEE Security & Privacy
  • September/October 2016

Every few years, a researcher replicates a security study by littering USB sticks around an organization’s grounds and waiting to see how many people pick them up and plug them in, causing the autorun function to install innocuous malware on their computers. These studies are great for making security professionals feel superior. The researchers get to demonstrate their security expertise and use the results as “teachable moments” for others. “If only everyone was more security aware and had more security training,” they say, “the Internet would be a much safer place.”…

Cryptography Is Harder Than It Looks

  • Bruce Schneier
  • IEEE Security & Privacy
  • January/February 2016

Writing a magazine column is always an exercise in time travel. I’m writing these words in early December. You’re reading them in February. This means anything that’s news as I write this will be old hat in two months, and anything that’s news to you hasn’t happened yet as I’m writing.

This past November, a group of researchers found some serious vulnerabilities in an encryption protocol that I, and probably most of you, use regularly. The group alerted the vendor, who is currently working to update the protocol and patch the vulnerabilities. The news will probably go public in the middle of February, unless the vendor successfully pleads for more time to finish their security patch. Until then, I’ve agreed not to talk about the specifics…

The Future of Incident Response

  • Bruce Schneier
  • IEEE Security & Privacy
  • September/October 2014

View or Download in Acrobat Format

Security is a combination of protection, detection, and response. It’s taken the industry a long time to get to this point, though. The 1990s was the era of protection. Our industry was full of products that would protect your computers and network. By 2000, we realized that detection needed to be formalized as well, and the industry was full of detection products and services.

This decade is one of response. Over the past few years, we’ve started seeing incident response (IR) products and services. Security teams are incorporating them into their arsenal because of three trends in computing. One, we’ve lost control of our computing environment. More of our data is held in the cloud by other companies, and more of our actual networks are outsourced. This makes response more complicated, because we might not have visibility into parts of our critical network infrastructures…

Metadata = Surveillance

  • Bruce Schneier
  • IEEE Security & Privacy
  • March/April 2014

Ever since reporters began publishing stories about NSA activities, based on documents provided by Edward Snowden, we’ve been repeatedly assured by government officials that it’s “only metadata.” This might fool the average person, but it shouldn’t fool those of us in the security field. Metadata equals surveillance data, and collecting metadata on people means putting them under surveillance.

An easy thought experiment demonstrates this. Imagine that you hired a private detective to eavesdrop on a subject. That detective would plant a bug in that subject’s home, office, and car. He would eavesdrop on his computer. He would listen in on that subject’s conversations, both face to face and remotely, and you would get a report on what was said in those conversations. (This is what President Obama repeatedly reassures us isn’t happening with our phone calls. But am I the only one who finds it suspicious that he always uses very specific words? “The NSA is not listening in on your phone calls.” This leaves open the possibility that the NSA is recording, transcribing, and analyzing your phone calls—and very occasionally reading them. This is far more likely to be true, and something a pedantically minded president could claim he wasn’t lying about.)…

Trust in Man/Machine Security Systems

  • Bruce Schneier
  • IEEE Security & Privacy
  • September/October 2013

I jacked a visitor’s badge from the Eisenhower Executive Office Building in Washington, DC, last month. The badges are electronic; they’re enabled when you check in at building security. You’re supposed to wear it on a chain around your neck at all times and drop it through a slot when you leave.

I kept the badge. I used my body as a shield, and the chain made a satisfying noise when it hit bottom. The guard let me through the gate.

The person after me had problems, though. Some part of the system knew something was wrong, and wouldn’t let her out. Eventually, the guard had to manually override something…

1 2 3 4

Sidebar photo of Bruce Schneier by Joe MacInnis.