Essays Tagged "IEEE Security & Privacy"

Page 1 of 5

NIST’s Post-Quantum Cryptography Standards Competition

  • IEEE Security & Privacy
  • September/October 2022

View or Download in PDF Format

Quantum computing is a completely new paradigm for computers. A quantum computer uses quantum properties such as superposition, which allows a qubit (a quantum bit) to be neither 0 nor 1, but something much more complicated. In theory, such a computer can solve problems too complex for conventional computers.

Current quantum computers are still toy prototypes, and the engineering advances required to build a functionally useful quantum computer are somewhere between a few years away and impossible. Even so, we already know that that such a computer could potentially factor large numbers and compute discrete logs, and break the RSA and Diffie-Hellman public-key algorithms in all of the useful key sizes…

Robot Hacking Games

  • IEEE Security & Privacy
  • January/February 2022

View or Download in PDF Format

Hacker “Capture the Flag” has been a mainstay at hacker gatherings since the mid-1990s. It’s like the outdoor game, but played on computer networks. Teams of hackers defend their own computers while attacking other teams’. It’s a controlled setting for what computer hackers do in real life: finding and fixing vulnerabilities in their own systems and exploiting them in others’. It’s the software vulnerability lifecycle.

These days, dozens of teams from around the world compete in weekend-long marathon events held all over the world. People train for months. Winning is a big deal. If you’re into this sort of thing, it’s pretty much the most fun you can possibly have on the Internet without committing multiple felonies…

What Will It Take?

  • IEEE Security & Privacy
  • May-June 2021

View or Download in PDF Format

What will it take for policy makers to take cybersecurity seriously? Not minimal-change seriously. Not here-and-there seriously. But really seriously. What will it take for policy makers to take cybersecurity seriously enough to enact substantive legislative changes that would address the problems? It’s not enough for the average person to be afraid of cyberattacks. They need to know that there are engineering fixes—and that’s something we can provide.

For decades, I have been waiting for the “big enough” incident that would finally do it. In 2015, Chinese military hackers hacked the Office of Personal Management and made off with the highly personal information of about 22 million Americans who had security clearances. In 2016, the Mirai botnet leveraged millions of Internet-of-Things devices with default admin passwords to launch a denial-of-service attack that disabled major Internet platforms and services in both North America and Europe. In 2017, hackers—years later we learned that it was the Chinese military—hacked the credit bureau Equifax and stole the personal information of 147 million Americans. In recent years, ransomware attacks have knocked hospitals offline, and many articles have been written about Russia inside the U.S. power grid. And last year, the Russian SVR hacked thousands of sensitive networks inside civilian critical infrastructure worldwide in what we’re now calling Sunburst (and used to call SolarWinds)…

Perspectives on the SolarWinds Incident

  • IEEE Security & Privacy
  • March-April 2021

View or Download in PDF Format

Excerpt

A serious cybersecurity event was recently revealed: malicious actors had gained access to the source code for the SolarWinds Orion monitoring and management software. They inserted malware into that source code so that, when the software was distributed to and deployed by SolarWinds customers as part of an update, the malicious software could be used to surveil customers who unknowingly installed the malware and gain potentially arbitrary control over the systems managed by Orion. Of course, such a level of control has given attackers opportunities for further exploitation as well…

Hacking the Tax Code

  • Bruce Schneier
  • IEEE Security & Privacy
  • September/October 2020

View or Download in PDF Format

The tax code isn’t software. It doesn’t run on a computer. But it’s still code. It’s a series of algorithms that takes an input—financial information for the year—and produces an output: the amount of tax owed. It’s incredibly complex code; there are a bazillion details and exceptions and special cases. It consists of government laws, rulings from the tax authorities, judicial decisions, and legal opinions.

Like computer code, the tax code has bugs. They might be mistakes in how the tax laws were written. They might be mistakes in how the tax code is interpreted, oversights in how parts of the law were conceived, or unintended omissions of some sort or another. They might arise from the exponentially huge number of ways different parts of the tax code interact…

Technologists vs. Policy Makers

  • Bruce Schneier
  • IEEE Security & Privacy
  • January/February 2020

View or Download in PDF Format

Spanish translation

Sometime around 1993 or 1994, during the first Crypto Wars, I was part of a group of cryptography experts that went to Washington to advocate for strong encryption. Matt Blaze and Ron Rivest were with me; I don’t remember who else. We met with then Massachusetts Representative Ed Markey. (He didn’t become a senator until 2013.) Back then, he and Vermont Senator Patrick Leahy were the most knowledgeable on this issue and our biggest supporters against government backdoors. They still are…

Cybersecurity for the Public Interest

  • Bruce Schneier
  • IEEE Security & Privacy
  • January/February 2019

View or Download in PDF Format

The Crypto Wars have been waging off-and-on for a quarter-century. On one side is law enforcement, which wants to be able to break encryption, to access devices and communications of terrorists and criminals. On the other are almost every cryptographer and computer security expert, repeatedly explaining that there’s no way to provide this capability without also weakening the security of every user of those devices and communications systems.

It’s an impassioned debate, acrimonious at times, but there are real technologies that can be brought to bear on the problem: key-escrow technologies, code obfuscation technologies, and backdoors with different properties. Pervasive surveillance capitalism—as practiced by the Internet companies that are already spying on everyone—matters. So does society’s underlying security needs. There is a security benefit to giving access to law enforcement, even though it would inevitably and invariably also give that access to others. However, there is also a security benefit of having these systems protected from all attackers, including law enforcement. These benefits are mutually exclusive. Which is more important, and to what degree?…

Cryptography after the Aliens Land

  • Bruce Schneier
  • IEEE Security & Privacy
  • September/October 2018

View or Download in PDF Format

Quantum computing is a new way of computing—one that could allow humankind to perform computations that are simply impossible using today’s computing technologies. It allows for very fast searching, something that would break some of the encryption algorithms we use today. And it allows us to easily factor large numbers, something that would break the RSA cryptosystem for any key length.

This is why cryptographers are hard at work designing and analyzing “quantum-resistant” public-key algorithms. Currently, quantum computing is too nascent for cryptographers to be sure of what is secure and what isn’t. But even assuming aliens have developed the technology to its full potential, quantum computing doesn’t spell the end of the world for cryptography. Symmetric cryptography is easy to make quantum-resistant, and we’re working on quantum-resistant public-key algorithms. If public-key cryptography ends up being a temporary anomaly based on our mathematical knowledge and computational ability, we’ll still survive. And if some inconceivable alien technology can break all of cryptography, we still can have secrecy based on information theory—albeit with significant loss of capability…

Artificial Intelligence and the Attack/Defense Balance

  • Bruce Schneier
  • IEEE Security & Privacy
  • March/April 2018

View or Download in PDF Format

Artificial intelligence technologies have the potential to upend the longstanding advantage that attack has over defense on the Internet. This has to do with the relative strengths and weaknesses of people and computers, how those all interplay in Internet security, and where AI technologies might change things.

You can divide Internet security tasks into two sets: what humans do well and what computers do well. Traditionally, computers excel at speed, scale, and scope. They can launch attacks in milliseconds and infect millions of computers. They can scan computer code to look for particular kinds of vulnerabilities, and data packets to identify particular kinds of attacks…

IoT Security: What’s Plan B?

  • Bruce Schneier
  • IEEE Security & Privacy
  • September/October 2017

View or Download in PDF Format

In August, four US Senators introduced a bill designed to improve Internet of Things (IoT) security. The IoT Cybersecurity Improvement Act of 2017 is a modest piece of legislation. It doesn’t regulate the IoT market. It doesn’t single out any industries for particular attention, or force any companies to do anything. It doesn’t even modify the liability laws for embedded software. Companies can continue to sell IoT devices with whatever lousy security they want.

What the bill does do is leverage the government’s buying power to nudge the market: any IoT product that the government buys must meet minimum security standards. It requires vendors to ensure that devices can not only be patched but are patched in an authenticated and timely manner, don’t have unchangeable default passwords, and are free from known vulnerabilities. It’s about as low a security bar as you can set, and that it will considerably improve security speaks volumes about the current state of IoT security. (Full disclosure: I helped draft some of the bill’s security requirements.)…

1 2 3 5

Sidebar photo of Bruce Schneier by Joe MacInnis.