The Dangers of a Software Monoculture
This essay appeared as the first half of a point-counterpoint with Marcus Ranum. Marcus’s half is here.
In 2003, a group of security experts—myself included—published a paper saying that 1) software monocultures are dangerous and 2) Microsoft, being the largest creator of monocultures out there, is the most dangerous. Marcus Ranum responded with an essay that basically said we were full of it. Now, eight years later, Marcus and I thought it would be interesting to revisit the debate.
The basic problem with a monoculture is that it’s all vulnerable to the same attack. The Irish Potato Famine of 1845—9 is perhaps the most famous monoculture-related disaster. The Irish planted only one variety of potato, and the genetically identical potatoes succumbed to a rot caused by Phytophthora infestans. Compare that with the diversity of potatoes traditionally grown in South America, each one adapted to the particular soil and climate of its home, and you can see the security value in heterogeneity.
Similar risks exist in networked computer systems. If everyone is using the same operating system or the same applications software or the same networking protocol, and a security vulnerability is discovered in that OS or software or protocol, a single exploit can affect everyone. This is the problem of large-scale Internet worms: many have affected millions of computers on the Internet.
If our networking environment weren’t homogeneous, a single worm couldn’t do so much damage. We’d be more like South America’s potato crop than Ireland’s. Conclusion: monoculture is bad; embrace diversity or die along with everyone else.
This analysis makes sense as far as it goes, but suffers from three basic flaws. The first is the assumption that our IT monoculture is as simple as the potato’s. When the particularly virulent Storm worm hit, it only affected from 1—10 million of its billion-plus possible victims. Why? Because some computers were running updated antivirus software, or were within locked-down networks, or whatever. Two computers might be running the same OS or applications software, but they’ll be inside different networks with different firewalls and IDSs and router policies, they’ll have different antivirus programs and different patch levels and different configurations, and they’ll be in different parts of the Internet connected to different servers running different services. As Marcus pointed out back in 2003, they’ll be a little bit different themselves. That’s one of the reasons large-scale Internet worms don’t infect everyone—as well as the network’s ability to quickly develop and deploy patches, new antivirus signatures, new IPS signatures, and so on.
The second flaw in the monoculture analysis is that it downplays the cost of diversity. Sure, it would be great if a corporate IT department ran half Windows and half Linux, or half Apache and half Microsoft IIS, but doing so would require more expertise and cost more money. It wouldn’t cost twice the expertise and money—there is some overlap—but there are significant economies of scale that result from everyone using the same software and configuration. A single operating system locked down by experts is far more secure than two operating systems configured by sysadmins who aren’t so expert. Sometimes, as Mark Twain said: “Put all your eggs in one basket, and then guard that basket!”
The third flaw is that you can only get a limited amount of diversity by using two operating systems, or routers from three vendors. South American potato diversity comes from hundreds of different varieties. Genetic diversity comes from millions of different genomes. In monoculture terms, two is little better than one. Even worse, since a network’s security is primarily the minimum of the security of its components, a diverse network is less secure because it is vulnerable to attacks against any of its heterogeneous components.
Some monoculture is necessary in computer networks. As long as we have to talk to each other, we’re all going to have to use TCP/IP, HTML, PDF, and all sorts of other standards and protocols that guarantee interoperability. Yes, there will be different implementations of the same protocol—and this is a good thing—but that won’t protect you completely. You can’t be too different from everyone else on the Internet, because if you were, you couldn’t be on the Internet.
Species basically have two options for propagating their genes: the lobster strategy and the avian strategy. Lobsters lay 5,000 to 40,000 eggs at a time, and essentially ignore them. Only a minuscule percentage of the hatchlings live to be four weeks old, but that’s sufficient to ensure gene propagation; from every 50,000 eggs, an average of two lobsters is expected to survive to legal size. Conversely, birds produce only a few eggs at a time, then spend a lot of effort ensuring that most of the hatchlings survive. In ecology, this is known as r/K selection theory. In either case, each of those offspring varies slightly genetically, so if a new threat arises, some of them will be more likely to survive. But even so, extinctions happen regularly on our planet; neither strategy is foolproof.
Our IT infrastructure is a lot more like a bird than a lobster. Yes, monoculture is dangerous and diversity is important. But investing time and effort in ensuring our current infrastructure’s survival is even more important.
Categories: Computer and Information Security