Thwarting an Internal Hacker

Rajendrasinh Makwana was a UNIX contractor for Fannie Mae. On October 24, he was fired. Before he left, he slipped a logic bomb into the organization’s network. The bomb would have “detonated” on January 31. It was programmed to disable access to the server on which it was running, block any network monitoring software, systematically and irretrievably erase everything—and then replicate itself on all 4,000 Fannie Mae servers. Court papers claim the damage would have been in the millions of dollars, a number that seems low. Fannie Mae would have been shut down for at least a week.

Luckily—and it does seem it was pure luck—another programmer discovered the script a week later, and disabled it.

Insiders are a perennial problem. They have access, and they’re known by the system. They know how the system and its security works, and its weak points. They have opportunity. Bank heists, casino thefts, large-scale corporate fraud, train robberies: many of the most impressive criminal attacks involve insiders. And, like Makwana’s attempt at revenge, these insiders can have pretty intense motives—motives that can only intensify as the economy continues to suffer and layoffs increase.

Insiders are especially pernicious attackers because they’re trusted. They have access because they’re supposed to have access. They have opportunity, and an understanding of the system, because they use it—or they designed, built, or installed it. They’re already inside the security system, making them much harder to defend against.

It’s not possible to design a system without trusted people. They’re everywhere. In offices, employees are trusted people given access to facilities and resources, and allowed to act—sometimes broadly, sometimes narrowly—in the company’s name. In stores, employees are allowed access to the back room and the cash register; and customers are trusted to walk into the store and touch the merchandise. IRS employees are trusted with personal tax information; hospital employees are trusted with personal health information. Banks, airports, and prisons couldn’t operate without trusted people.

Replacing trusted people with computers doesn’t make the problem go away; it just moves it around and makes it even more complex. The computer, software, and network designers, implementers, coders, installers, maintainers, etc. are all trusted people. See any analysis of the security of electronic voting machines, or some of the frauds perpetrated against computerized gambling machines, for some graphic examples of the risks inherent in replacing people with computers.

Of course, this problem is much, much older than computers. And the solutions haven’t changed much throughout history, either. There are five basic techniques to deal with trusted people:

1. Limit the number of trusted people. This one is obvious. The fewer people who have root access to the computer system, know the combination to the safe, or have the authority to sign checks, the more secure the system is.

2. Ensure that trusted people are also trustworthy. This is the idea behind background checks, lie detector tests, personality profiling, prohibiting convicted felons from getting certain jobs, limiting other jobs to citizens, the TSA’s no-fly list, and so on, as well as behind bonding employees, which means there are deep pockets standing behind them if they turn out not to be trustworthy.

3. Limit the amount of trust each person has. This is compartmentalization; the idea here is to limit the amount of damage a person can do if he ends up not being trustworthy. This is the concept behind giving people keys that only unlock their office or passwords that only unlock their account, as well as “need to know” and other levels of security clearance.

4. Give people overlapping spheres of trust. This is what security professionals call defense in depth. It’s why it takes two people with two separate keys to launch nuclear missiles, and two signatures on corporate checks over a certain value. It’s the idea behind bank tellers requiring management overrides for high-value transactions, double-entry bookkeeping, and all those guards and cameras at casinos. It’s why, when you go to a movie theater, one person sells you a ticket and another person standing a few yards away tears it in half: It makes it much harder for one employee to defraud the system. It’s why key bank employees need to take their two-week vacations all at once—so their replacements have a chance to uncover any fraud.

5. Detect breaches of trust after the fact and prosecute the guilty. In the end, the four previous techniques can only do so well. Trusted people can subvert a system. Most of the time, we discover the security breach after the fact and then punish the perpetrator through the legal system: publicly, so as to provide a deterrence effect and increase the overall level of security in society. This is why audit is so vital.

These security techniques don’t only protect against fraud or sabotage; they protect against the more common problem: mistakes. Trusted people aren’t perfect; they can inadvertently cause damage. They can make a mistake, or they can be tricked into making a mistake through social engineering.

Good security systems use multiple measures, all working together. Fannie Mae certainly limits the number of people who have the ability to slip malicious scripts into their computer systems, and certainly limits the access that most of these people have. It probably has a hiring process that makes it less likely that malicious people come to work at Fannie Mae. It obviously doesn’t have an audit process by which a change one person makes on the servers is checked by someone else; I’m sure that would be prohibitively expensive. Certainly the company’s IT department should have terminated Makwana’s network access as soon as he was fired, and not at the end of the day.

In the end, systems will always have trusted people who can subvert them. It’s important to keep in mind that incidents like this don’t happen very often; that most people are honest and honorable. Security is very much designed to protect against the dishonest minority. And often little things—like disabling access immediately upon termination—can go a long way.

Categories: Business of Security, Computer and Information Security, Trust

Sidebar photo of Bruce Schneier by Joe MacInnis.