Entries Tagged "hacking"

Page 4 of 67

T-Mobile Data Breach

It’s a big one:

As first reported by Motherboard on Sunday, someone on the dark web claims to have obtained the data of 100 million from T-Mobile’s servers and is selling a portion of it on an underground forum for 6 bitcoin, about $280,000. The trove includes not only names, phone numbers, and physical addresses but also more sensitive data like social security numbers, driver’s license information, and IMEI numbers, unique identifiers tied to each mobile device. Motherboard confirmed that samples of the data “contained accurate information on T-Mobile customers.”

Posted on August 19, 2021 at 6:17 AMView Comments

Defeating Microsoft’s Trusted Platform Module

This is a really interesting story explaining how to defeat Microsoft’s TPM in 30 minutes—without having to solder anything to the motherboard.

Researchers at the security consultancy Dolos Group, hired to test the security of one client’s network, received a new Lenovo computer preconfigured to use the standard security stack for the organization. They received no test credentials, configuration details, or other information about the machine.

They were not only able to get into the BitLocker-encrypted computer, but then use the computer to get into the corporate network.

It’s the “evil maid attack.” It requires physical access to your computer, but you leave it in your hotel room all the time when you go out to dinner.

Original blog post.

Posted on August 9, 2021 at 6:19 AMView Comments

The European Space Agency Launches Hackable Satellite

Of course this is hackable:

A sophisticated telecommunications satellite that can be completely repurposed while in space has launched.

[…]

Because the satellite can be reprogrammed in orbit, it can respond to changing demands during its lifetime.

[…]

The satellite can detect and characterise any rogue emissions, enabling it to respond dynamically to accidental interference or intentional jamming.

We can assume strong encryption, and good key management. Still, seems like a juicy target for other governments.

Posted on August 2, 2021 at 6:46 AMView Comments

Hiding Malware in ML Models

Interesting research: “EvilModel: Hiding Malware Inside of Neural Network Models.”

Abstract: Delivering malware covertly and detection-evadingly is critical to advanced malware campaigns. In this paper, we present a method that delivers malware covertly and detection-evadingly through neural network models. Neural network models are poorly explainable and have a good generalization ability. By embedding malware into the neurons, malware can be delivered covertly with minor or even no impact on the performance of neural networks. Meanwhile, since the structure of the neural network models remains unchanged, they can pass the security scan of antivirus engines. Experiments show that 36.9MB of malware can be embedded into a 178MB-AlexNet model within 1% accuracy loss, and no suspicious are raised by antivirus engines in VirusTotal, which verifies the feasibility of this method. With the widespread application of artificial intelligence, utilizing neural networks becomes a forwarding trend of malware. We hope this work could provide a referenceable scenario for the defense on neural network-assisted attacks.

News article.

Posted on July 27, 2021 at 6:25 AMView Comments

Iranian State-Sponsored Hacking Attempts

Interesting attack:

Masquerading as UK scholars with the University of London’s School of Oriental and African Studies (SOAS), the threat actor TA453 has been covertly approaching individuals since at least January 2021 to solicit sensitive information. The threat actor, an APT who we assess with high confidence supports Islamic Revolutionary Guard Corps (IRGC) intelligence collection efforts, established backstopping for their credential phishing infrastructure by compromising a legitimate site of a highly regarded academic institution to deliver personalized credential harvesting pages disguised as registration links. Identified targets included experts in Middle Eastern affairs from think tanks, senior professors from well-known academic institutions, and journalists specializing in Middle Eastern coverage.

These connection attempts were detailed and extensive, often including lengthy conversations prior to presenting the next stage in the attack chain. Once the conversation was established, TA453 delivered a “registration link” to a legitimate but compromised website belonging to the University of London’s SOAS radio. The compromised site was configured to capture a variety of credentials. Of note, TA453 also targeted the personal email accounts of at least one of their targets. In subsequent phishing emails, TA453 shifted their tactics and began delivering the registration link earlier in their engagement with the target without requiring extensive conversation. This operation, dubbed SpoofedScholars, represents one of the more sophisticated TA453 campaigns identified by Proofpoint.

The report details the tactics.

News article.

Posted on July 13, 2021 at 9:04 AMView Comments

More Russian Hacking

Two reports this week. The first is from Microsoft, which wrote:

As part of our investigation into this ongoing activity, we also detected information-stealing malware on a machine belonging to one of our customer support agents with access to basic account information for a small number of our customers. The actor used this information in some cases to launch highly-targeted attacks as part of their broader campaign.

The second is from the NSA, CISA, FBI, and the UK’s NCSC, which wrote that the GRU is continuing to conduct brute-force password guessing attacks around the world, and is in some cases successful. From the NSA press release:

Once valid credentials were discovered, the GTsSS combined them with various publicly known vulnerabilities to gain further access into victim networks. This, along with various techniques also detailed in the advisory, allowed the actors to evade defenses and collect and exfiltrate various information in the networks, including mailboxes.

News article.

Posted on July 2, 2021 at 6:26 AMView Comments

Mollitiam Industries is the Newest Cyberweapons Arms Manufacturer

Wired is reporting on a company called Mollitiam Industries:

Marketing materials left exposed online by a third-party claim Mollitiam’s interception products, dubbed “Invisible Man” and “Night Crawler,” are capable of remotely accessing a target’s files, location, and covertly turning on a device’s camera and microphone. Its spyware is also said to be equipped with a keylogger, which means every keystroke made on an infected device—including passwords, search queries and messages sent via encrypted messaging apps—can be tracked and monitored.

To evade detection, the malware makes use of the company’s so-called “invisible low stealth technology” and its Android product is advertised as having “low data and battery consumption” to prevent people from suspecting their phone or tablet has been infected. Mollitiam is also currently marketing a tool that it claims enables “mass surveillance of digital profiles and identities” across social media and the dark web.

Posted on June 23, 2021 at 6:01 AMView Comments

The Misaligned Incentives for Cloud Security

Russia’s Sunburst cyberespionage campaign, discovered late last year, impacted more than 100 large companies and US federal agencies, including the Treasury, Energy, Justice, and Homeland Security departments. A crucial part of the Russians’ success was their ability to move through these organizations by compromising cloud and local network identity systems to then access cloud accounts and pilfer emails and files.

Hackers said by the US government to have been working for the Kremlin targeted a widely used Microsoft cloud service that synchronizes user identities. The hackers stole security certificates to create their own identities, which allowed them to bypass safeguards such as multifactor authentication and gain access to Office 365 accounts, impacting thousands of users at the affected companies and government agencies.

It wasn’t the first time cloud services were the focus of a cyberattack, and it certainly won’t be the last. Cloud weaknesses were also critical in a 2019 breach at Capital One. There, an Amazon Web Services cloud vulnerability, compounded by Capital One’s own struggle to properly configure a complex cloud service, led to the disclosure of tens of millions of customer records, including credit card applications, Social Security numbers, and bank account information.

This trend of attacks on cloud services by criminals, hackers, and nation states is growing as cloud computing takes over worldwide as the default model for information technologies. Leaked data is bad enough, but disruption to the cloud, even an outage at a single provider, could quickly cost the global economy billions of dollars a day.

Cloud computing is an important source of risk both because it has quickly supplanted traditional IT and because it concentrates ownership of design choices at a very small number of companies. First, cloud is increasingly the default mode of computing for organizations, meaning ever more users and critical data from national intelligence and defense agencies ride on these technologies. Second, cloud computing services, especially those supplied by the world’s four largest providers—Amazon, Microsoft, Alibaba, and Google—concentrate key security and technology design choices inside a small number of organizations. The consequences of bad decisions or poorly made trade-offs can quickly scale to hundreds of millions of users.

The cloud is everywhere. Some cloud companies provide software as a service, support your Netflix habit, or carry your Slack chats. Others provide computing infrastructure like business databases and storage space. The largest cloud companies provide both.

The cloud can be deployed in several different ways, each of which shift the balance of responsibility for the security of this technology. But the cloud provider plays an important role in every case. Choices the provider makes in how these technologies are designed, built, and deployed influence the user’s security—yet the user has very little influence over them. Then, if Google or Amazon has a vulnerability in their servers—which you are unlikely to know about and have no control over—you suffer the consequences.

The problem is one of economics. On the surface, it might seem that competition between cloud companies gives them an incentive to invest in their users’ security. But several market failures get in the way of that ideal. First, security is largely an externality for these cloud companies, because the losses due to data breaches are largely borne by their users. As long as a cloud provider isn’t losing customers by the droves—which generally doesn’t happen after a security incident—it is incentivized to underinvest in security. Additionally, data shows that investors don’t punish the cloud service companies either: Stock price dips after a public security breach are both small and temporary.

Second, public information about cloud security generally doesn’t share the design trade-offs involved in building these cloud services or provide much transparency about the resulting risks. While cloud companies have to publicly disclose copious amounts of security design and operational information, it can be impossible for consumers to understand which threats the cloud services are taking into account, and how. This lack of understanding makes it hard to assess a cloud service’s overall security. As a result, customers and users aren’t able to differentiate between secure and insecure services, so they don’t base their buying and use decisions on it.

Third, cybersecurity is complex—and even more complex when the cloud is involved. For a customer like a company or government agency, the security dependencies of various cloud and on-premises network systems and services can be subtle and hard to map out. This means that users can’t adequately assess the security of cloud services or how they will interact with their own networks. This is a classic “lemons market” in economics, and the result is that cloud providers provide variable levels of security, as documented by Dan Geer, the chief information security officer for In-Q-Tel, and Wade Baker, a professor at Virginia Tech’s College of Business, when they looked at the prevalence of severe security findings at the top 10 largest cloud providers. Yet most consumers are none the wiser.

The result is a market failure where cloud service providers don’t compete to provide the best security for their customers and users at the lowest cost. Instead, cloud companies take the chance that they won’t get hacked, and past experience tells them they can weather the storm if they do. This kind of decision-making and priority-setting takes place at the executive level, of course, and doesn’t reflect the dedication and technical skill of product engineers and security specialists. The effect of this underinvestment is pernicious, however, by piling on risk that’s largely hidden from users. Widespread adoption of cloud computing carries that risk to an organization’s network, to its customers and users, and, in turn, to the wider internet.

This aggregation of cybersecurity risk creates a national security challenge. Policymakers can help address the challenge by setting clear expectations for the security of cloud services—and for making decisions and design trade-offs about that security transparent. The Biden administration, including newly nominated National Cyber Director Chris Inglis, should lead an interagency effort to work with cloud providers to review their threat models and evaluate the security architecture of their various offerings. This effort to require greater transparency from cloud providers and exert more scrutiny of their security engineering efforts should be accompanied by a push to modernize cybersecurity regulations for the cloud era.

The Federal Risk and Authorization Management Program (FedRAMP), which is the principal US government program for assessing the risk of cloud services and authorizing them for use by government agencies, would be a prime vehicle for these efforts. A recent executive order outlines several steps to make FedRAMP faster and more responsive. But the program is still focused largely on the security of individual services rather than the cloud vendors’ deeper architectural choices and threat models. Congressional action should reinforce and extend the executive order by adding new obligations for vendors to provide transparency about design trade-offs, threat models, and resulting risks. These changes could help transform FedRAMP into a more effective tool of security governance even as it becomes faster and more efficient.

Cloud providers have become important national infrastructure. Not since the heights of the mainframe era between the 1960s and early 1980s has the world witnessed computing systems of such complexity used by so many but designed and created by so few. The security of this infrastructure demands greater transparency and public accountability—if only to match the consequences of its failure.

This essay was written with Trey Herr, and previously appeared in Foreign Policy.

Posted on May 28, 2021 at 6:20 AMView Comments

Sidebar photo of Bruce Schneier by Joe MacInnis.