Entries Tagged "cybersecurity"

Page 20 of 22

Real-World Security and the Internet of Things

Disaster stories involving the Internet of Things are all the rage. They feature cars (both driven and driverless), the power grid, dams, and tunnel ventilation systems. A particularly vivid and realistic one, near-future fiction published last month in New York Magazine, described a cyberattack on New York that involved hacking of cars, the water system, hospitals, elevators, and the power grid. In these stories, thousands of people die. Chaos ensues. While some of these scenarios overhype the mass destruction, the individual risks are all real. And traditional computer and network security isn’t prepared to deal with them.

Classic information security is a triad: confidentiality, integrity, and availability. You’ll see it called “CIA,” which admittedly is confusing in the context of national security. But basically, the three things I can do with your data are steal it (confidentiality), modify it (integrity), or prevent you from getting it (availability).

So far, Internet threats have largely been about confidentiality. These can be expensive; one survey estimated that data breaches cost an average of $3.8 million each. They can be embarrassing, as in the theft of celebrity photos from Apple’s iCloud in 2014 or the Ashley Madison breach in 2015. They can be damaging, as when the government of North Korea stole tens of thousands of internal documents from Sony or when hackers stole data about 83 million customer accounts from JPMorgan Chase, both in 2014. They can even affect national security, as in the case of the Office of Personnel Management data breach by—presumptively—China in 2015.

On the Internet of Things, integrity and availability threats are much worse than confidentiality threats. It’s one thing if your smart door lock can be eavesdropped upon to know who is home. It’s another thing entirely if it can be hacked to allow a burglar to open the door—or prevent you from opening your door. A hacker who can deny you control of your car, or take over control, is much more dangerous than one who can eavesdrop on your conversations or track your car’s location.

With the advent of the Internet of Things and cyber-physical systems in general, we’ve given the Internet hands and feet: the ability to directly affect the physical world. What used to be attacks against data and information have become attacks against flesh, steel, and concrete.

Today’s threats include hackers crashing airplanes by hacking into computer networks, and remotely disabling cars, either when they’re turned off and parked or while they’re speeding down the highway. We’re worried about manipulated counts from electronic voting machines, frozen water pipes through hacked thermostats, and remote murder through hacked medical devices. The possibilities are pretty literally endless. The Internet of Things will allow for attacks we can’t even imagine.

The increased risks come from three things: software control of systems, interconnections between systems, and automatic or autonomous systems. Let’s look at them in turn:

Software Control. The Internet of Things is a result of everything turning into a computer. This gives us enormous power and flexibility, but it brings insecurities with it as well. As more things come under software control, they become vulnerable to all the attacks we’ve seen against computers. But because many of these things are both inexpensive and long-lasting, many of the patch and update systems that work with computers and smartphones won’t work. Right now, the only way to patch most home routers is to throw them away and buy new ones. And the security that comes from replacing your computer and phone every few years won’t work with your refrigerator and thermostat: on the average, you replace the former every 15 years, and the latter approximately never. A recent Princeton survey found 500,000 insecure devices on the Internet. That number is about to explode.

Interconnections. As these systems become interconnected, vulnerabilities in one lead to attacks against others. Already we’ve seen Gmail accounts compromised through vulnerabilities in Samsung smart refrigerators, hospital IT networks compromised through vulnerabilities in medical devices, and Target Corporation hacked through a vulnerability in its HVAC system. Systems are filled with externalities that affect other systems in unforeseen and potentially harmful ways. What might seem benign to the designers of a particular system becomes harmful when it’s combined with some other system. Vulnerabilities on one system cascade into other systems, and the result is a vulnerability that no one saw coming and no one bears responsibility for fixing. The Internet of Things will make exploitable vulnerabilities much more common. It’s simple mathematics. If 100 systems are all interacting with each other, that’s about 5,000 interactions and 5,000 potential vulnerabilities resulting from those interactions. If 300 systems are all interacting with each other, that’s 45,000 interactions. 1,000 systems: 12.5 million interactions. Most of them will be benign or uninteresting, but some of them will be very damaging.

Autonomy. Increasingly, our computer systems are autonomous. They buy and sell stocks, turn the furnace on and off, regulate electricity flow through the grid, and—in the case of driverless cars—automatically pilot multi-ton vehicles to their destinations. Autonomy is great for all sorts of reasons, but from a security perspective it means that the effects of attacks can take effect immediately, automatically, and ubiquitously. The more we remove humans from the loop, faster attacks can do their damage and the more we lose our ability to rely on actual smarts to notice something is wrong before it’s too late.

We’re building systems that are increasingly powerful, and increasingly useful. The necessary side effect is that they are increasingly dangerous. A single vulnerability forced Chrysler to recall 1.4 million vehicles in 2015. We’re used to computers being attacked at scale—think of the large-scale virus infections from the last decade—but we’re not prepared for this happening to everything else in our world.

Governments are taking notice. Last year, both Director of National Intelligence James Clapper and NSA Director Mike Rogers testified before Congress, warning of these threats. They both believe we’re vulnerable.

This is how it was phrased in the DNI’s 2015 Worldwide Threat Assessment: “Most of the public discussion regarding cyber threats has focused on the confidentiality and availability of information; cyber espionage undermines confidentiality, whereas denial-of-service operations and data-deletion attacks undermine availability. In the future, however, we might also see more cyber operations that will change or manipulate electronic information in order to compromise its integrity (i.e. accuracy and reliability) instead of deleting it or disrupting access to it. Decision-making by senior government officials (civilian and military), corporate executives, investors, or others will be impaired if they cannot trust the information they are receiving.”

The DNI 2016 threat assessment included something similar: “Future cyber operations will almost certainly include an increased emphasis on changing or manipulating data to compromise its integrity (i.e., accuracy and reliability) to affect decision making, reduce trust in systems, or cause adverse physical effects. Broader adoption of IoT devices and AI—in settings such as public utilities and healthcare—will only exacerbate these potential effects.”

Security engineers are working on technologies that can mitigate much of this risk, but many solutions won’t be deployed without government involvement. This is not something that the market can solve. Like data privacy, the risks and solutions are too technical for most people and organizations to understand; companies are motivated to hide the insecurity of their own systems from their customers, their users, and the public; the interconnections can make it impossible to connect data breaches with resultant harms; and the interests of the companies often don’t match the interests of the people.

Governments need to play a larger role: setting standards, policing compliance, and implementing solutions across companies and networks. And while the White House Cybersecurity National Action Plan says some of the right things, it doesn’t nearly go far enough, because so many of us are phobic of any government-led solution to anything.

The next president will probably be forced to deal with a large-scale Internet disaster that kills multiple people. I hope he or she responds with both the recognition of what government can do that industry can’t, and the political will to make it happen.

This essay previously appeared on Vice Motherboard.

BoingBoing post.

EDITED TO ADD (8/11): An essay that agrees with me.

Posted on July 28, 2016 at 5:51 AMView Comments

More on the Going Dark Debate

Lawfare is turning out to be the go-to blog for policy wonks about various government debates on cybersecurity. There are two good posts this week on the Going Dark debate.

The first is from those of us who wrote the “Keys Under Doormats” paper last year, criticizing the concept of backdoors and key escrow. We were responding to a half-baked proposal on how to give the government access without causing widespread insecurity, and we pointed out where almost of all of these sorts of proposals fall short:

1. Watch for systems that rely on a single powerful key or a small set of them.

2. Watch for systems using high-value keys over and over and still claiming not to increase risk.

3. Watch for the claim that the abstract algorithm alone is the measure of system security.

4. Watch for the assumption that scaling anything on the global Internet is easy.

5. Watch for the assumption that national borders are not a factor.

6. Watch for the assumption that human rights and the rule of law prevail throughout the world.

The second is by Susan Landau, and is a response to the ODNI’s response to the “Don’t Panic” report. Our original report said basically that the FBI wasn’t going dark and that surveillance information is everywhere. At a Senate hearing, Sen. Wyden requested that the Office of the Director of National Intelligence respond to the report. It did—not very well, honestly—and Landau responded to that response. She pointed out that there really wasn’t much disagreement: that the points it claimed to have issue with were actually points we made and agreed with.

In the end, the ODNI’s response to our report leaves me somewhat confused. The reality is that the only strong disagreement seems to be with an exaggerated view of one finding. It almost appears as if ODNI is using the Harvard report as an opportunity to say, “Widespread use of encryption will make our work life more difficult.” Of course it will. Widespread use of encryption will also help prevent some of the cybersecurity exploits and attacks we have been experiencing over the last decade. The ODNI letter ignored that issue.

EDITED TO ADD: Related is this article where James Comey defends spending $1M+ on that iPhone vulnerability. There’s some good discussion of the vulnerabilities equities process, and the FBI’s technical lack of sophistication.

Posted on May 13, 2016 at 6:55 AMView Comments

How People Learn about Computer Security

Interesting research: “Identifying patterns in informal sources of security information,” by Emilee Rader and Rick Wash, Journal of Cybersecurity, 1 Dec 2015.

Abstract: Computer users have access to computer security information from many different sources, but few people receive explicit computer security training. Despite this lack of formal education, users regularly make many important security decisions, such as “Should I click on this potentially shady link?” or “Should I enter my password into this form?” For these decisions, much knowledge comes from incidental and informal learning. To better understand differences in the security-related information available to users for such learning, we compared three informal sources of computer security information: news articles, web pages containing computer security advice, and stories about the experiences of friends and family. Using a Latent Dirichlet Allocation topic model, we found that security information from peers usually focuses on who conducts attacks, information containing expertise focuses instead on how attacks are conducted, and information from the news focuses on the consequences of attacks. These differences may prevent users from understanding the persistence and frequency of seemingly mundane threats (viruses, phishing), or from associating protective measures with the generalized threats the users are concerned about (hackers). Our findings highlight the potential for sources of informal security education to create patterns in user knowledge that affect their ability to make good security decisions.

Posted on December 10, 2015 at 6:54 AMView Comments

How Israel Regulates Encryption

Interesting essay about how Israel regulates encryption:

…the Israeli encryption control mechanisms operate without directly legislating any form of encryption-key depositories, built-in back or front door access points, or other similar requirements. Instead, Israel’s system emphasizes smooth initial licensing processes and cultivates government-private sector collaboration. These processes help ensure that Israeli authorities are apprised of the latest encryption and cyber developments and position the government to engage effectively with the private sector when national security risks are identified.

Basically, it looks like secret agreements made in smoke-filled rooms, very discreet with no oversight or accountability. The fact that pretty much everyone in IT security has served in an offensive cybersecurity capacity for the Israeli army helps. As does the fact that the country is so small, making informal deal-making manageable. It doesn’t scale.

Why is this important?

…companies in Israel, a country comprising less than 0.11% of the world’s population, are estimated to have sold 10% ($6 billion out of $60 billion) of global encryption and cyber technologies for 2014.

Posted on December 8, 2015 at 7:25 AMView Comments

On CISA

I have avoided writing about the Cybersecurity Information Sharing Act (CISA), largely because the details kept changing. (For those not following closely, similar bills were passed by both the House and the Senate. They’re now being combined into a single bill which will be voted on again, and then almost certainly signed into law by President Obama.)

Now that it’s pretty solid, I find that I don’t have to write anything, because Danny Weitzner did such a good job, writing about how the bill encourages companies to share personal information with the government, allows them to take some offensive measures against attackers (or innocents, if they get it wrong), waives privacy protections, and gives companies immunity from prosecution.

Information sharing is essential to good cybersecurity, and we need more of it. But CISA is a really bad law.

This is good, too.

Posted on November 17, 2015 at 12:03 PMView Comments

NSA Running a Massive IDS on the Internet Backbone

The latest story from the Snowden documents, co-published by the New York Times and ProPublica, shows that the NSA is operating a signature-based intrusion detection system on the Internet backbone:

In mid-2012, Justice Department lawyers wrote two secret memos permitting the spy agency to begin hunting on Internet cables, without a warrant and on American soil, for data linked to computer intrusions originating abroad—including traffic that flows to suspicious Internet addresses or contains malware, the documents show.

The Justice Department allowed the agency to monitor only addresses and “cybersignatures” ­—patterns associated with computer intrusions—that it could tie to foreign governments. But the documents also note that the N.S.A. sought to target hackers even when it could not establish any links to foreign powers.

To me, the big deal here is 1) the NSA is doing this without a warrant, and 2) that the policy change happened in secret, without any public policy debate.

The effort is the latest known expansion of the N.S.A.’s warrantless surveillance program, which allows the government to intercept Americans’ cross-border communications if the target is a foreigner abroad. While the N.S.A. has long searched for specific email addresses and phone numbers of foreign intelligence targets, the Obama administration three years ago started allowing the agency to search its communications streams for less-identifying Internet protocol addresses or strings of harmful computer code.

[…]

To carry out the orders, the F.B.I. negotiated in 2012 to use the N.S.A.’s system for monitoring Internet traffic crossing “chokepoints operated by U.S. providers through which international communications enter and leave the United States,” according to a 2012 N.S.A. document. The N.S.A. would send the intercepted traffic to the bureau’s “cyberdata repository” in Quantico, Virginia.

Ninety pages of NSA documents accompany the article. Here is a single OCRed PDF of them all.

Jonathan Mayer was consulted on the article. He gives more details on his blog, which I recommend you all read.

In my view, the key takeaway is this: for over a decade, there has been a public policy debate about what role the NSA should play in domestic cybersecurity. The debate has largely presupposed that the NSA’s domestic authority is narrowly circumscribed, and that DHS and DOJ play a far greater role. Today, we learn that assumption is incorrect. The NSA already asserts broad domestic cybersecurity powers. Recognizing the scope of the NSA’s authority is particularly critical for pending legislation.

This is especially important for pending information sharing legislation, which Mayer explains.

The other big news is that ProPublica’s Julia Angwin is working with Laura Poitras on the Snowden documents. I expect that this isn’t the last artcile we’re going to see.

EDITED TO ADD: Others are writing about these documents. Shane Harris explains how the NSA and FBI are working together on Internet surveillance. Benjamin Wittes says that the story is wrong, that “combating overseas cybersecurity threats from foreign governments” is exactly what the NSA is supposed to be doing, and that they don’t need a warrant for any of that. And Marcy Wheeler points out that she has been saying for years that the NSA has been using Section 702 to justify Internet surveillance.

EDITED TO ADD (6/5): Charlie Savage responds to Ben Wittes.

Posted on June 5, 2015 at 7:42 AMView Comments

Sidebar photo of Bruce Schneier by Joe MacInnis.