Entries Tagged "cars"

Page 3 of 16

Bluetooth Flaw Allows Remote Unlocking of Digital Locks

Locks that use Bluetooth Low Energy to authenticate keys are vulnerable to remote unlocking. The research focused on Teslas, but the exploit is generalizable.

In a video shared with Reuters, NCC Group researcher Sultan Qasim Khan was able to open and then drive a Tesla using a small relay device attached to a laptop which bridged a large gap between the Tesla and the Tesla owner’s phone.

“This proves that any product relying on a trusted BLE connection is vulnerable to attacks even from the other side of the world,” the UK-based firm said in a statement, referring to the Bluetooth Low Energy (BLE) protocol—technology used in millions of cars and smart locks which automatically open when in close proximity to an authorised device.

Although Khan demonstrated the hack on a 2021 Tesla Model Y, NCC Group said any smart locks using BLE technology, including residential smart locks, could be unlocked in the same way.

Another news article.

EDITED TO ADD (6/14): A longer version of the demo video.

Posted on May 20, 2022 at 6:02 AMView Comments

Surveillance by Driverless Car

San Francisco police are using autonomous vehicles as mobile surveillance cameras.

Privacy advocates say the revelation that police are actively using AV footage is cause for alarm.

“This is very concerning,” Electronic Frontier Foundation (EFF) senior staff attorney Adam Schwartz told Motherboard. He said cars in general are troves of personal consumer data, but autonomous vehicles will have even more of that data from capturing the details of the world around them. “So when we see any police department identify AVs as a new source of evidence, that’s very concerning.”

Posted on May 12, 2022 at 1:07 PMView Comments

Apple AirTags Are Being Used to Track People and Cars

This development suprises no one who has been paying attention:

Researchers now believe AirTags, which are equipped with Bluetooth technology, could be revealing a more widespread problem of tech-enabled tracking. They emit a digital signal that can be detected by devices running Apple’s mobile operating system. Those devices then report where an AirTag has last been seen. Unlike similar tracking products from competitors such as Tile, Apple added features to prevent abuse, including notifications like the one Ms. Estrada received and automatic beeping. (Tile plans to release a feature to prevent the tracking of people next year, a spokeswoman for that company said.)

[…]

A person who doesn’t own an iPhone might have a harder time detecting an unwanted AirTag. AirTags aren’t compatible with Android smartphones. Earlier this month, Apple released an Android app that can scan for AirTags—but you have to be vigilant enough to download it and proactively use it.

Apple declined to say if it was working with Google on technology that would allow Android phones to automatically detect its trackers.

People who said they have been tracked have called Apple’s safeguards insufficient. Ms. Estrada said she was notified four hours after her phone first noticed the rogue gadget. Others said it took days before they were made aware of an unknown AirTag. According to Apple, the timing of the alerts can vary depending on the iPhone’s operating system and location settings.

Posted on December 31, 2021 at 9:52 AMView Comments

Thieves Using AirTags to “Follow” Cars

From Ontario and not surprising:

Since September 2021, officers have investigated five incidents where suspects have placed small tracking devices on high-end vehicles so they can later locate and steal them. Brand name “air tags” are placed in out-of-sight areas of the target vehicles when they are parked in public places like malls or parking lots. Thieves then track the targeted vehicles to the victim’s residence, where they are stolen from the driveway.

Thieves typically use tools like screwdrivers to enter the vehicles through the driver or passenger door, while ensuring not to set off alarms. Once inside, an electronic device, typically used by mechanics to reprogram the factory setting, is connected to the onboard diagnostics port below the dashboard and programs the vehicle to accept a key the thieves have brought with them. Once the new key is programmed, the vehicle will start and the thieves drive it away.

I’m not sure if there’s anything that can be done:

When Apple first released AirTags earlier this year, concerns immediately sprung up about nefarious use cases for the covert trackers. Apple responded with a slew of anti-stalking measures, but those are more intended for keeping people safe than cars. An AirTag away from its owner will sound an alarm, letting anyone nearby know that it’s been left behind, but it can take up to 24 hours for that alarm to go off—more than enough time to nab a car in the dead of night.

Posted on December 6, 2021 at 10:25 AMView Comments

Tesla Remotely Hacked from a Drone

This is an impressive hack:

Security researchers Ralf-Philipp Weinmann of Kunnamon, Inc. and Benedikt Schmotzle of Comsecuris GmbH have found remote zero-click security vulnerabilities in an open-source software component (ConnMan) used in Tesla automobiles that allowed them to compromise parked cars and control their infotainment systems over WiFi. It would be possible for an attacker to unlock the doors and trunk, change seat positions, both steering and acceleration modes—in short, pretty much what a driver pressing various buttons on the console can do. This attack does not yield drive control of the car though.

That last sentence is important.

News article.

Posted on May 4, 2021 at 9:41 AMView Comments

Split-Second Phantom Images Fool Autopilots

Researchers are tricking autopilots by inserting split-second images into roadside billboards.

Researchers at Israel’s Ben Gurion University of the Negev … previously revealed that they could use split-second light projections on roads to successfully trick Tesla’s driver-assistance systems into automatically stopping without warning when its camera sees spoofed images of road signs or pedestrians. In new research, they’ve found they can pull off the same trick with just a few frames of a road sign injected on a billboard’s video. And they warn that if hackers hijacked an internet-connected billboard to carry out the trick, it could be used to cause traffic jams or even road accidents while leaving little evidence behind.

[…]

In this latest set of experiments, the researchers injected frames of a phantom stop sign on digital billboards, simulating what they describe as a scenario in which someone hacked into a roadside billboard to alter its video. They also upgraded to Tesla’s most recent version of Autopilot known as HW3. They found that they could again trick a Tesla or cause the same Mobileye device to give the driver mistaken alerts with just a few frames of altered video.

The researchers found that an image that appeared for 0.42 seconds would reliably trick the Tesla, while one that appeared for just an eighth of a second would fool the Mobileye device. They also experimented with finding spots in a video frame that would attract the least notice from a human eye, going so far as to develop their own algorithm for identifying key blocks of pixels in an image so that a half-second phantom road sign could be slipped into the “uninteresting” portions.

The paper:

Abstract: In this paper, we investigate “split-second phantom attacks,” a scientific gap that causes two commercial advanced driver-assistance systems (ADASs), Telsa Model X (HW 2.5 and HW 3) and Mobileye 630, to treat a depthless object that appears for a few milliseconds as a real obstacle/object. We discuss the challenge that split-second phantom attacks create for ADASs. We demonstrate how attackers can apply split-second phantom attacks remotely by embedding phantom road signs into an advertisement presented on a digital billboard which causes Tesla’s autopilot to suddenly stop the car in the middle of a road and Mobileye 630 to issue false notifications. We also demonstrate how attackers can use a projector in order to cause Tesla’s autopilot to apply the brakes in response to a phantom of a pedestrian that was projected on the road and Mobileye 630 to issue false notifications in response to a projected road sign. To counter this threat, we propose a countermeasure which can determine whether a detected object is a phantom or real using just the camera sensor. The countermeasure (GhostBusters) uses a “committee of experts” approach and combines the results obtained from four lightweight deep convolutional neural networks that assess the authenticity of an object based on the object’s light, context, surface, and depth. We demonstrate our countermeasure’s effectiveness (it obtains a TPR of 0.994 with an FPR of zero) and test its robustness to adversarial machine learning attacks.

Posted on October 19, 2020 at 6:28 AMView Comments

Used Tesla Components Contain Personal Information

Used Tesla components, sold on eBay, still contain personal information, even after a factory reset.

This is a decades-old problem. It’s a problem with used hard drives. It’s a problem with used photocopiers and printers. It will be a problem with IoT devices. It’ll be a problem with everything, until we decide that data deletion is a priority.

EDITED TO ADD (6/20): These computes were not factory reset. Apparently, he data was intentionally left on the computer so that the technicians could transfer it when upgrading the computer. It’s still bad, but a factory reset does work.

Posted on May 8, 2020 at 9:46 AMView Comments

Attacking Driverless Cars with Projected Images

Interesting research—”Phantom Attacks Against Advanced Driving Assistance Systems“:

Abstract: The absence of deployed vehicular communication systems, which prevents the advanced driving assistance systems (ADASs) and autopilots of semi/fully autonomous cars to validate their virtual perception regarding the physical environment surrounding the car with a third party, has been exploited in various attacks suggested by researchers. Since the application of these attacks comes with a cost (exposure of the attacker’s identity), the delicate exposure vs. application balance has held, and attacks of this kind have not yet been encountered in the wild. In this paper, we investigate a new perceptual challenge that causes the ADASs and autopilots of semi/fully autonomous to consider depthless objects (phantoms) as real. We show how attackers can exploit this perceptual challenge to apply phantom attacks and change the abovementioned balance, without the need to physically approach the attack scene, by projecting a phantom via a drone equipped with a portable projector or by presenting a phantom on a hacked digital billboard that faces the Internet and is located near roads. We show that the car industry has not considered this type of attack by demonstrating the attack on today’s most advanced ADAS and autopilot technologies: Mobileye 630 PRO and the Tesla Model X, HW 2.5; our experiments show that when presented with various phantoms, a car’s ADAS or autopilot considers the phantoms as real objects, causing these systems to trigger the brakes, steer into the lane of oncoming traffic, and issue notifications about fake road signs. In order to mitigate this attack, we present a model that analyzes a detected object’s context, surface, and reflected light, which is capable of detecting phantoms with 0.99 AUC. Finally, we explain why the deployment of vehicular communication systems might reduce attackers’ opportunities to apply phantom attacks but won’t eliminate them.

The paper will be presented at CyberTech at the end of the month.

Posted on February 3, 2020 at 6:24 AMView Comments

Sidebar photo of Bruce Schneier by Joe MacInnis.