Entries Tagged "signatures"

Page 1 of 3

New SSH Vulnerability

This is interesting:

For the first time, researchers have demonstrated that a large portion of cryptographic keys used to protect data in computer-to-server SSH traffic are vulnerable to complete compromise when naturally occurring computational errors occur while the connection is being established.

[…]

The vulnerability occurs when there are errors during the signature generation that takes place when a client and server are establishing a connection. It affects only keys using the RSA cryptographic algorithm, which the researchers found in roughly a third of the SSH signatures they examined. That translates to roughly 1 billion signatures out of the 3.2 billion signatures examined. Of the roughly 1 billion RSA signatures, about one in a million exposed the private key of the host.

Research paper:

Passive SSH Key Compromise via Lattices

Abstract: We demonstrate that a passive network attacker can opportunistically obtain private RSA host keys from an SSH server that experiences a naturally arising fault during signature computation. In prior work, this was not believed to be possible for the SSH protocol because the signature included information like the shared Diffie-Hellman secret that would not be available to a passive network observer. We show that for the signature parameters commonly in use for SSH, there is an efficient lattice attack to recover the private key in case of a signature fault. We provide a security analysis of the SSH, IKEv1, and IKEv2 protocols in this scenario, and use our attack to discover hundreds of compromised keys in the wild from several independently vulnerable implementations.

Posted on November 15, 2023 at 12:51 PMView Comments

Micro-Star International Signing Key Stolen

Micro-Star International—aka MSI—had its UEFI signing key stolen last month.

This raises the possibility that the leaked key could push out updates that would infect a computer’s most nether regions without triggering a warning. To make matters worse, Matrosov said, MSI doesn’t have an automated patching process the way Dell, HP, and many larger hardware makers do. Consequently, MSI doesn’t provide the same kind of key revocation capabilities.

Delivering a signed payload isn’t as easy as all that. “Gaining the kind of control required to compromise a software build system is generally a non-trivial event that requires a great deal of skill and possibly some luck.” But it just got a whole lot easier.

Posted on May 15, 2023 at 7:18 AMView Comments

Java Cryptography Implementation Mistake Allows Digital-Signature Forgeries

Interesting implementation mistake:

The vulnerability, which Oracle patched on Tuesday, affects the company’s implementation of the Elliptic Curve Digital Signature Algorithm in Java versions 15 and above. ECDSA is an algorithm that uses the principles of elliptic curve cryptography to authenticate messages digitally.

[…]

ECDSA signatures rely on a pseudo-random number, typically notated as K, that’s used to derive two additional numbers, R and S. To verify a signature as valid, a party must check the equation involving R and S, the signer’s public key, and a cryptographic hash of the message. When both sides of the equation are equal, the signature is valid.

[…]

For the process to work correctly, neither R nor S can ever be a zero. That’s because one side of the equation is R, and the other is multiplied by R and a value from S. If the values are both 0, the verification check translates to 0 = 0 X (other values from the private key and hash), which will be true regardless of the additional values. That means an adversary only needs to submit a blank signature to pass the verification check successfully.

Madden wrote:

Guess which check Java forgot?

That’s right. Java’s implementation of ECDSA signature verification didn’t check if R or S were zero, so you could produce a signature value in which they are both 0 (appropriately encoded) and Java would accept it as a valid signature for any message and for any public key. The digital equivalent of a blank ID card.

More details.

Posted on April 22, 2022 at 7:09 AMView Comments

Hacking Digitally Signed PDF Files

Interesting paper: “Shadow Attacks: Hiding and Replacing Content in Signed PDFs“:

Abstract: Digitally signed PDFs are used in contracts and invoices to guarantee the authenticity and integrity of their content. A user opening a signed PDF expects to see a warning in case of any modification. In 2019, Mladenov et al. revealed various parsing vulnerabilities in PDF viewer implementations.They showed attacks that could modify PDF documents without invalidating the signature. As a consequence, affected vendors of PDF viewers implemented countermeasures preventing all attacks.

This paper introduces a novel class of attacks, which we call shadow attacks. The shadow attacks circumvent all existing countermeasures and break the integrity protection of digitally signed PDFs. Compared to previous attacks, the shadow attacks do not abuse implementation issues in a PDF viewer. In contrast, shadow attacks use the enormous flexibility provided by the PDF specification so that shadow documents remain standard-compliant. Since shadow attacks abuse only legitimate features,they are hard to mitigate.

Our results reveal that 16 (including Adobe Acrobat and Foxit Reader) of the 29 PDF viewers tested were vulnerable to shadow attacks. We introduce our tool PDF-Attacker which can automatically generate shadow attacks. In addition, we implemented PDF-Detector to prevent shadow documents from being signed or forensically detect exploits after being applied to signed PDFs.

EDITED TO ADD (3/12): This was written about last summer.

Posted on March 8, 2021 at 6:10 AMView Comments

Evidence for the Security of PKCS #1 Digital Signatures

This is interesting research: “On the Security of the PKCS#1 v1.5 Signature Scheme“:

Abstract: The RSA PKCS#1 v1.5 signature algorithm is the most widely used digital signature scheme in practice. Its two main strengths are its extreme simplicity, which makes it very easy to implement, and that verification of signatures is significantly faster than for DSA or ECDSA. Despite the huge practical importance of RSA PKCS#1 v1.5 signatures, providing formal evidence for their security based on plausible cryptographic hardness assumptions has turned out to be very difficult. Therefore the most recent version of PKCS#1 (RFC 8017) even recommends a replacement the more complex and less efficient scheme RSA-PSS, as it is provably secure and therefore considered more robust. The main obstacle is that RSA PKCS#1 v1.5 signatures use a deterministic padding scheme, which makes standard proof techniques not applicable.

We introduce a new technique that enables the first security proof for RSA-PKCS#1 v1.5 signatures. We prove full existential unforgeability against adaptive chosen-message attacks (EUF-CMA) under the standard RSA assumption. Furthermore, we give a tight proof under the Phi-Hiding assumption. These proofs are in the random oracle model and the parameters deviate slightly from the standard use, because we require a larger output length of the hash function. However, we also show how RSA-PKCS#1 v1.5 signatures can be instantiated in practice such that our security proofs apply.

In order to draw a more complete picture of the precise security of RSA PKCS#1 v1.5 signatures, we also give security proofs in the standard model, but with respect to weaker attacker models (key-only attacks) and based on known complexity assumptions. The main conclusion of our work is that from a provable security perspective RSA PKCS#1 v1.5 can be safely used, if the output length of the hash function is chosen appropriately.

I don’t think the protocol is “provably secure,” meaning that it cannot have any vulnerabilities. What this paper demonstrates is that there are no vulnerabilities under the model of the proof. And, more importantly, that PKCS #1 v1.5 is as secure as any of its successors like RSA-PSS and RSA Full-Domain.

Posted on September 25, 2018 at 6:50 AMView Comments

Signed Malware

Stuxnet famously used legitimate digital certificates to sign its malware. A research paper from last year found that the practice is much more common than previously thought.

Now, researchers have presented proof that digitally signed malware is much more common than previously believed. What’s more, it predated Stuxnet, with the first known instance occurring in 2003. The researchers said they found 189 malware samples bearing valid digital signatures that were created using compromised certificates issued by recognized certificate authorities and used to sign legitimate software. In total, 109 of those abused certificates remain valid. The researchers, who presented their findings Wednesday at the ACM Conference on Computer and Communications Security, found another 136 malware samples signed by legitimate CA-issued certificates, although the signatures were malformed.

The results are significant because digitally signed software is often able to bypass User Account Control and other Windows measures designed to prevent malicious code from being installed. Forged signatures also represent a significant breach of trust because certificates provide what’s supposed to be an unassailable assurance to end users that the software was developed by the company named in the certificate and hasn’t been modified by anyone else. The forgeries also allow malware to evade antivirus protections. Surprisingly, weaknesses in the majority of available AV programs prevented them from detecting known malware that was digitally signed even though the signatures weren’t valid.

Posted on February 2, 2018 at 6:38 AMView Comments

"Proof Mode" for your Smartphone Camera

ProofMode is an app for your smartphone that adds data to the photos you take to prove that they are real and unaltered:

On the technical front, what the app is doing is automatically generating an OpenPGP key for this installed instance of the app itself, and using that to automatically sign all photos and videos at time of capture. A sha256 hash is also generated, and combined with a snapshot of all available device sensor data, such as GPS location, wifi and mobile networks, altitude, device language, hardware type, and more. This is also signed, and stored with the media. All of this happens with no noticeable impact on battery life or performance, every time the user takes a photo or video.

This doesn’t solve all the problems with fake photos, but it’s a good step in the right direction.

Posted on March 1, 2017 at 6:02 AMView Comments

Quantum Tokens for Digital Signatures

This paper wins “best abstract” award: “Quantum Tokens for Digital Signatures,” by Shalev Ben David and Or Sattath:

Abstract: The fisherman caught a quantum fish. “Fisherman, please let me go,” begged the fish, “and I will grant you three wishes.” The fisherman agreed. The fish gave the fisherman a quantum computer, three quantum signing tokens and his classical public key.

The fish explained: “to sign your three wishes, use the tokenized signature scheme on this quantum computer, then show your valid signature to the king, who owes me a favor.”

The fisherman used one of the signing tokens to sign the document “give me a castle!” and rushed to the palace. The king executed the classical verification algorithm using the fish’s public key, and since it was valid, the king complied.

The fisherman’s wife wanted to sign ten wishes using their two remaining signing tokens. The fisherman did not want to cheat, and secretly sailed to meet the fish. “Fish, my wife wants to sign ten more wishes.”

But the fish was not worried: “I have learned quantum cryptography following the previous story (The Fisherman and His Wife by the brothers Grimm). The quantum tokens are consumed during the signing. Your polynomial wife cannot even sign four wishes using the three signing tokens I gave you.”

“How does it work?” wondered the fisherman.

“Have you heard of quantum money? These are quantum states which can be easily verified but are hard to copy. This tokenized quantum signature scheme extends Aaronson and Christiano’s quantum money scheme, which is why the signing tokens cannot be copied.”

“Does your scheme have additional fancy properties?” the fisherman asked.

“Yes, the scheme has other security guarantees: revocability, testability and everlasting security. Furthermore, if you’re at the sea and your quantum phone has only classical reception, you can use this scheme to transfer the value of the quantum money to shore,” said the fish, and swam his way.

Posted on October 6, 2016 at 7:03 AMView Comments

NSA Running a Massive IDS on the Internet Backbone

The latest story from the Snowden documents, co-published by the New York Times and ProPublica, shows that the NSA is operating a signature-based intrusion detection system on the Internet backbone:

In mid-2012, Justice Department lawyers wrote two secret memos permitting the spy agency to begin hunting on Internet cables, without a warrant and on American soil, for data linked to computer intrusions originating abroad—including traffic that flows to suspicious Internet addresses or contains malware, the documents show.

The Justice Department allowed the agency to monitor only addresses and “cybersignatures” ­—patterns associated with computer intrusions—that it could tie to foreign governments. But the documents also note that the N.S.A. sought to target hackers even when it could not establish any links to foreign powers.

To me, the big deal here is 1) the NSA is doing this without a warrant, and 2) that the policy change happened in secret, without any public policy debate.

The effort is the latest known expansion of the N.S.A.’s warrantless surveillance program, which allows the government to intercept Americans’ cross-border communications if the target is a foreigner abroad. While the N.S.A. has long searched for specific email addresses and phone numbers of foreign intelligence targets, the Obama administration three years ago started allowing the agency to search its communications streams for less-identifying Internet protocol addresses or strings of harmful computer code.

[…]

To carry out the orders, the F.B.I. negotiated in 2012 to use the N.S.A.’s system for monitoring Internet traffic crossing “chokepoints operated by U.S. providers through which international communications enter and leave the United States,” according to a 2012 N.S.A. document. The N.S.A. would send the intercepted traffic to the bureau’s “cyberdata repository” in Quantico, Virginia.

Ninety pages of NSA documents accompany the article. Here is a single OCRed PDF of them all.

Jonathan Mayer was consulted on the article. He gives more details on his blog, which I recommend you all read.

In my view, the key takeaway is this: for over a decade, there has been a public policy debate about what role the NSA should play in domestic cybersecurity. The debate has largely presupposed that the NSA’s domestic authority is narrowly circumscribed, and that DHS and DOJ play a far greater role. Today, we learn that assumption is incorrect. The NSA already asserts broad domestic cybersecurity powers. Recognizing the scope of the NSA’s authority is particularly critical for pending legislation.

This is especially important for pending information sharing legislation, which Mayer explains.

The other big news is that ProPublica’s Julia Angwin is working with Laura Poitras on the Snowden documents. I expect that this isn’t the last artcile we’re going to see.

EDITED TO ADD: Others are writing about these documents. Shane Harris explains how the NSA and FBI are working together on Internet surveillance. Benjamin Wittes says that the story is wrong, that “combating overseas cybersecurity threats from foreign governments” is exactly what the NSA is supposed to be doing, and that they don’t need a warrant for any of that. And Marcy Wheeler points out that she has been saying for years that the NSA has been using Section 702 to justify Internet surveillance.

EDITED TO ADD (6/5): Charlie Savage responds to Ben Wittes.

Posted on June 5, 2015 at 7:42 AMView Comments

1 2 3

Sidebar photo of Bruce Schneier by Joe MacInnis.