Entries Tagged "random numbers"

Page 1 of 5

Vulnerability in the Kaspersky Password Manager

A vulnerability (just patched) in the random number generator used in the Kaspersky Password Manager resulted in easily guessable passwords:

The password generator included in Kaspersky Password Manager had several problems. The most critical one is that it used a PRNG not suited for cryptographic purposes. Its single source of entropy was the current time. All the passwords it created could be bruteforced in seconds. This article explains how to securely generate passwords, why Kaspersky Password Manager failed, and how to exploit this flaw. It also provides a proof of concept to test if your version is vulnerable.

The product has been updated and its newest versions aren’t affected by this issue.

Stupid programming mistake, or intentional backdoor? We don’t know.

More generally: generating random numbers is hard. I recommend my own algorithm: Fortuna. I also recommend my own password manager: Password Safe.

EDITED TO ADD: Commentary from Matthew Green.

Posted on July 6, 2021 at 9:27 AMView Comments

New Reductor Nation-State Malware Compromises TLS

Kaspersky has a detailed blog post about a new piece of sophisticated malware that it’s calling Reductor. The malware is able to compromise TLS traffic by infecting the computer with hacked TLS engine substituted on the fly, “marking” infected TLS handshakes by compromising the underlining random-number generator, and adding new digital certificates. The result is that the attacker can identify, intercept, and decrypt TLS traffic from the infected computer.

The Kaspersky Attribution Engine shows strong code similarities between this family and the COMPfun Trojan. Moreover, further research showed that the original COMpfun Trojan most probably is used as a downloader in one of the distribution schemes. Based on these similarities, we’re quite sure the new malware was developed by the COMPfun authors.

The COMpfun malware was initially documented by G-DATA in 2014. Although G-DATA didn’t identify which actor was using this malware, Kaspersky tentatively linked it to the Turla APT, based on the victimology. Our telemetry indicates that the current campaign using Reductor started at the end of April 2019 and remained active at the time of writing (August 2019). We identified targets in Russia and Belarus.

[…]

Turla has in the past shown many innovative ways to accomplish its goals, such as using hijacked satellite infrastructure. This time, if we’re right that Turla is the actor behind this new wave of attacks, then with Reductor it has implemented a very interesting way to mark a host’s encrypted TLS traffic by patching the browser without parsing network packets. The victimology for this new campaign aligns with previous Turla interests.

We didn’t observe any MitM functionality in the analyzed malware samples. However, Reductor is able to install digital certificates and mark the targets’ TLS traffic. It uses infected installers for initial infection through HTTP downloads from warez websites. The fact the original files on these sites are not infected also points to evidence of subsequent traffic manipulation.

The attribution chain from Reductor to COMPfun to Turla is thin. Speculation is that the attacker behind all of this is Russia.

Posted on October 10, 2019 at 1:49 PMView Comments

Yubico Security Keys with a Crypto Flaw

Wow, is this an embarrassing bug:

Yubico is recalling a line of security keys used by the U.S. government due to a firmware flaw. The company issued a security advisory today that warned of an issue in YubiKey FIPS Series devices with firmware versions 4.4.2 and 4.4.4 that reduced the randomness of the cryptographic keys it generates. The security keys are used by thousands of federal employees on a daily basis, letting them securely log-on to their devices by issuing one-time passwords.

The problem in question occurs after the security key powers up. According to Yubico, a bug keeps “some predictable content” inside the device’s data buffer that could impact the randomness of the keys generated. Security keys with ECDSA signatures are in particular danger. A total of 80 of the 256 bits generated by the key remain static, meaning an attacker who gains access to several signatures could recreate the private key.

Boing Boing post.

EDITED TO ADD (6/12): From Microsoft TechNet Security Guidance blog (in 2014): “Why We’re Not Recommending ‘FIPS Mode’ Anymore.

Posted on July 1, 2019 at 5:55 AMView Comments

CAs Reissue Over One Million Weak Certificates

Turns out that the software a bunch of CAs used to generate public-key certificates was flawed: they created random serial numbers with only 63 bits instead of the required 64. That may not seem like a big deal to the layman, but that one bit change means that the serial numbers only have half the required entropy. This really isn’t a security problem; the serial numbers are to protect against attacks that involve weak hash functions, and we don’t allow those weak hash functions anymore. Still, it’s a good thing that the CAs are reissuing the certificates. The point of a standard is that it’s to be followed.

Posted on March 18, 2019 at 6:23 AMView Comments

Proof that HMAC-DRBG has No Back Doors

New research: “Verified Correctness and Security of mbedTLS HMAC-DRBG,” by Katherine Q. Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer, Adam Petcher, and Andrew W. Appel.

Abstract: We have formalized the functional specification of HMAC-DRBG (NIST 800-90A), and we have proved its cryptographic security — that its output is pseudorandom — using a hybrid game-based proof. We have also proved that the mbedTLS implementation (C program) correctly implements this functional specification. That proof composes with an existing C compiler correctness proof to guarantee, end-to-end, that the machine language program gives strong pseudorandomness. All proofs (hybrid games, C program verification, compiler, and their composition) are machine-checked in the Coq proof assistant. Our proofs are modular: the hybrid game proof holds on any implementation of HMAC-DRBG that satisfies our functional specification. Therefore, our functional specification can serve as a high-assurance reference.

Posted on August 30, 2017 at 6:37 AMView Comments

1 2 3 5

Sidebar photo of Bruce Schneier by Joe MacInnis.