Entries Tagged "patching"

Page 6 of 12

The Future of Ransomware

Ransomware isn’t new, but it’s increasingly popular and profitable.

The concept is simple: Your computer gets infected with a virus that encrypts your files until you pay a ransom. It’s extortion taken to its networked extreme. The criminals provide step-by-step instructions on how to pay, sometimes even offering a help line for victims unsure how to buy bitcoin. The price is designed to be cheap enough for people to pay instead of giving up: a few hundred dollars in many cases. Those who design these systems know their market, and it’s a profitable one.

The ransomware that has affected systems in more than 150 countries recently, WannaCry, made press headlines last week, but it doesn’t seem to be more virulent or more expensive than other ransomware. This one has a particularly interesting pedigree: It’s based on a vulnerability developed by the National Security Agency that can be used against many versions of the Windows operating system. The NSA’s code was, in turn, stolen by an unknown hacker group called Shadow Brokers ­ widely believed by the security community to be the Russians ­ in 2014 and released to the public in April.

Microsoft patched the vulnerability a month earlier, presumably after being alerted by the NSA that the leak was imminent. But the vulnerability affected older versions of Windows that Microsoft no longer supports, and there are still many people and organizations that don’t regularly patch their systems. This allowed whoever wrote WannaCry ­—it could be anyone from a lone individual to an organized crime syndicate—to use it to infect computers and extort users.

The lessons for users are obvious: Keep your system patches up to date and regularly backup your data. This isn’t just good advice to defend against ransomware, but good advice in general. But it’s becoming obsolete.

Everything is becoming a computer. Your microwave is a computer that makes things hot. Your refrigerator is a computer that keeps things cold. Your car and television, the traffic lights and signals in your city and our national power grid are all computers. This is the much-hyped Internet of Things (IoT). It’s coming, and it’s coming faster than you might think. And as these devices connect to the Internet, they become vulnerable to ransomware and other computer threats.

It’s only a matter of time before people get messages on their car screens saying that the engine has been disabled and it will cost $200 in bitcoin to turn it back on. Or a similar message on their phones about their Internet-enabled door lock: Pay $100 if you want to get into your house tonight. Or pay far more if they want their embedded heart defibrillator to keep working.

This isn’t just theoretical. Researchers have already demonstrated a ransomware attack against smart thermostats, which may sound like a nuisance at first but can cause serious property damage if it’s cold enough outside. If the device under attack has no screen, you’ll get the message on the smartphone app you control it from.

Hackers don’t even have to come up with these ideas on their own; the government agencies whose code was stolen were already doing it. One of the leaked CIA attack tools targets Internet-enabled Samsung smart televisions.

Even worse, the usual solutions won’t work with these embedded systems. You have no way to back up your refrigerator’s software, and it’s unclear whether that solution would even work if an attack targets the functionality of the device rather than its stored data.

These devices will be around for a long time. Unlike our phones and computers, which we replace every few years, cars are expected to last at least a decade. We want our appliances to run for 20 years or more, our thermostats even longer.

What happens when the company that made our smart washing machine—or just the computer part—goes out of business, or otherwise decides that they can no longer support older models? WannaCry affected Windows versions as far back as XP, a version that Microsoft no longer supports. The company broke with policy and released a patch for those older systems, but it has both the engineering talent and the money to do so.

That won’t happen with low-cost IoT devices.

Those devices are built on the cheap, and the companies that make them don’t have the dedicated teams of security engineers ready to craft and distribute security patches. The economics of the IoT doesn’t allow for it. Even worse, many of these devices aren’t patchable. Remember last fall when the Mirai botnet infected hundreds of thousands of Internet-enabled digital video recorders, webcams and other devices and launched a massive denial-of-service attack that resulted in a host of popular websites dropping off the Internet? Most of those devices couldn’t be fixed with new software once they were attacked. The way you update your DVR is to throw it away and buy a new one.

Solutions aren’t easy and they’re not pretty. The market is not going to fix this unaided. Security is a hard-to-evaluate feature against a possible future threat, and consumers have long rewarded companies that provide easy-to-compare features and a quick time-to-market at its expense. We need to assign liabilities to companies that write insecure software that harms people, and possibly even issue and enforce regulations that require companies to maintain software systems throughout their life cycle. We may need minimum security standards for critical IoT devices. And it would help if the NSA got more involved in securing our information infrastructure and less in keeping it vulnerable so the government can eavesdrop.

I know this all sounds politically impossible right now, but we simply cannot live in a future where everything—from the things we own to our nation’s infrastructure ­—can be held for ransom by criminals again and again.

This essay previously appeared in the Washington Post.

Posted on May 23, 2017 at 5:55 AMView Comments

Google Discloses Details of an Unpatched Microsoft Vulnerability

Google’s Project Zero is serious about releasing the details of security vulnerabilities 90 days after they alert the vendors, even if they’re unpatched. It just exposed a nasty vulnerability in Microsoft’s browsers.

This is the second unpatched Microsoft vulnerability it exposed last week.

I’m a big fan of responsible disclosure. The threat to publish vulnerabilities is what puts pressure on vendors to patch their systems. But I wonder what competitive pressure is on the Google team to find embarrassing vulnerabilities in competitors’ products.

Posted on March 9, 2017 at 6:28 AMView Comments

Security Economics of the Internet of Things

Brian Krebs is a popular reporter on the cybersecurity beat. He regularly exposes cybercriminals and their tactics, and consequently is regularly a target of their ire. Last month, he wrote about an online attack-for-hire service that resulted in the arrest of the two proprietors. In the aftermath, his site was taken down by a massive DDoS attack.

In many ways, this is nothing new. Distributed denial-of-service attacks are a family of attacks that cause websites and other Internet-connected systems to crash by overloading them with traffic. The “distributed” part means that other insecure computers on the Internet—sometimes in the millions­—are recruited to a botnet to unwittingly participate in the attack. The tactics are decades old; DDoS attacks are perpetrated by lone hackers trying to be annoying, criminals trying to extort money, and governments testing their tactics. There are defenses, and there are companies that offer DDoS mitigation services for hire.

Basically, it’s a size vs. size game. If the attackers can cobble together a fire hose of data bigger than the defender’s capability to cope with, they win. If the defenders can increase their capability in the face of attack, they win.

What was new about the Krebs attack was both the massive scale and the particular devices the attackers recruited. Instead of using traditional computers for their botnet, they used CCTV cameras, digital video recorders, home routers, and other embedded computers attached to the Internet as part of the Internet of Things.

Much has been written about how the IoT is wildly insecure. In fact, the software used to attack Krebs was simple and amateurish. What this attack demonstrates is that the economics of the IoT mean that it will remain insecure unless government steps in to fix the problem. This is a market failure that can’t get fixed on its own.

Our computers and smartphones are as secure as they are because there are teams of security engineers working on the problem. Companies like Microsoft, Apple, and Google spend a lot of time testing their code before it’s released, and quickly patch vulnerabilities when they’re discovered. Those companies can support such teams because those companies make a huge amount of money, either directly or indirectly, from their software­—and, in part, compete on its security. This isn’t true of embedded systems like digital video recorders or home routers. Those systems are sold at a much lower margin, and are often built by offshore third parties. The companies involved simply don’t have the expertise to make them secure.

Even worse, most of these devices don’t have any way to be patched. Even though the source code to the botnet that attacked Krebs has been made public, we can’t update the affected devices. Microsoft delivers security patches to your computer once a month. Apple does it just as regularly, but not on a fixed schedule. But the only way for you to update the firmware in your home router is to throw it away and buy a new one.

The security of our computers and phones also comes from the fact that we replace them regularly. We buy new laptops every few years. We get new phones even more frequently. This isn’t true for all of the embedded IoT systems. They last for years, even decades. We might buy a new DVR every five or ten years. We replace our refrigerator every 25 years. We replace our thermostat approximately never. Already the banking industry is dealing with the security problems of Windows 95 embedded in ATMs. This same problem is going to occur all over the Internet of Things.

The market can’t fix this because neither the buyer nor the seller cares. Think of all the CCTV cameras and DVRs used in the attack against Brian Krebs. The owners of those devices don’t care. Their devices were cheap to buy, they still work, and they don’t even know Brian. The sellers of those devices don’t care: they’re now selling newer and better models, and the original buyers only cared about price and features. There is no market solution because the insecurity is what economists call an externality: it’s an effect of the purchasing decision that affects other people. Think of it kind of like invisible pollution.

What this all means is that the IoT will remain insecure unless government steps in and fixes the problem. When we have market failures, government is the only solution. The government could impose security regulations on IoT manufacturers, forcing them to make their devices secure even though their customers don’t care. They could impose liabilities on manufacturers, allowing people like Brian Krebs to sue them. Any of these would raise the cost of insecurity and give companies incentives to spend money making their devices secure.

Of course, this would only be a domestic solution to an international problem. The Internet is global, and attackers can just as easily build a botnet out of IoT devices from Asia as from the United States. Long term, we need to build an Internet that is resilient against attacks like this. But that’s a long time coming. In the meantime, you can expect more attacks that leverage insecure IoT devices.

This essay previously appeared on Vice Motherboard.

Slashdot thread.

Here are some of the things that are vulnerable.

EDITED TO ADD (10/17: DARPA is looking for IoT-security ideas from the private sector.

Posted on October 10, 2016 at 10:26 AMView Comments

iPhone Zero-Day Used by UAE Government

Last week, Apple issued a critical security patch for the iPhone: iOS 9.3.5. The incredible story is that this patch is the result of investigative work by Citizen Lab, which uncovered a zero-day exploit being used by the UAE government against a human rights defender. The UAE spyware was provided by the Israeli cyberweapons arms manufacturer NSO Group.

This is a big deal. iOS vulnerabilities are expensive, and can sell for over $1M. That we can find one used in the wild and patch it, rendering it valueless, is a major win and puts a huge dent in the vulnerabilities market. The more we can do this, the less valuable these zero-days will be to both criminals and governments—and to criminal governments.

Citizen Lab blog post and report. New York Times article. More news articles.

Posted on August 29, 2016 at 1:21 PMView Comments

Hijacking the PC Update Process

There’s a new report on security vulnerabilities in the PC initialization/update process, allowing someone to hijack it to install malware:

One of the major things we found was the presence of third-party update tools. Every OEM we looked at included one (or more) with their default configuration. We also noticed that Microsoft Signature Edition systems also often included OEM update tools, potentially making their distribution larger than other OEM software.

Updaters are an obvious target for a network attacker, this is a no-brainer. There have been plenty of attacks published against updaters and package management tools in the past, so we can expect OEM’s to learn from this, right?

Spoiler: we broke all of them (some worse than others). Every single vendor had at least one vulnerability that could allow for a man-in-the-middle (MITM) attacker to execute arbitrary code as SYSTEM. We’d like to pat ourselves on the back for all the great bugs we found, but the reality is, it’s far too easy.

News article.

Posted on June 6, 2016 at 6:10 AMView Comments

GCHQ Discloses Two OS X Vulnerabilities to Apple

This is good news:

Communications and Electronics Security Group (CESG), the information security arm of GCHQ, was credited with the discovery of two vulnerabilities that were patched by Apple last week.

The flaws could allow hackers to corrupt memory and cause a denial of service through a crafted app or execute arbitrary code in a privileged context.

The memory handling vulnerabilities (CVE-2016-1822 and CVE-2016-1829) affect OS X El Capitan v10.11 and later operating systems, according to Apple’s 2016-003 security update. The memory corruption vulnerabilities allowed hackers to execute arbitrary code with kernel privileges.

There’s still a lot that needs to be said about this equities process.

Posted on May 24, 2016 at 2:12 PMView Comments

FTC Investigating Android Patching Practices

It’s a known truth that most Android vulnerabilities don’t get patched. It’s not Google’s fault. It releases the patches, but the phone carriers don’t push them down to their smartphone users.

Now the Federal Communications Commission and the Federal Trade Commission are investigating, sending letters to major carriers and device makers.

I think this is a good thing. This is a long-existing market failure, and a place where we need government regulation to make us all more secure.

Posted on May 11, 2016 at 2:37 PMView Comments

Credential Stealing as an Attack Vector

Traditional computer security concerns itself with vulnerabilities. We employ antivirus software to detect malware that exploits vulnerabilities. We have automatic patching systems to fix vulnerabilities. We debate whether the FBI should be permitted to introduce vulnerabilities in our software so it can get access to systems with a warrant. This is all important, but what’s missing is a recognition that software vulnerabilities aren’t the most common attack vector: credential stealing is.

The most common way hackers of all stripes, from criminals to hacktivists to foreign governments, break into networks is by stealing and using a valid credential. Basically, they steal passwords, set up man-in-the-middle attacks to piggy-back on legitimate logins, or engage in cleverer attacks to masquerade as authorized users. It’s a more effective avenue of attack in many ways: it doesn’t involve finding a zero-day or unpatched vulnerability, there’s less chance of discovery, and it gives the attacker more flexibility in technique.

Rob Joyce, the head of the NSA’s Tailored Access Operations (TAO) group—basically the country’s chief hacker—gave a rare public talk at a conference in January. In essence, he said that zero-day vulnerabilities are overrated, and credential stealing is how he gets into networks: “A lot of people think that nation states are running their operations on zero days, but it’s not that common. For big corporate networks, persistence and focus will get you in without a zero day; there are so many more vectors that are easier, less risky, and more productive.”

This is true for us, and it’s also true for those attacking us. It’s how the Chinese hackers breached the Office of Personnel Management in 2015. The 2014 criminal attack against Target Corporation started when hackers stole the login credentials of the company’s HVAC vendor. Iranian hackers stole US login credentials. And the hacktivist that broke into the cyber-arms manufacturer Hacking Team and published pretty much every proprietary document from that company used stolen credentials.

As Joyce said, stealing a valid credential and using it to access a network is easier, less risky, and ultimately more productive than using an existing vulnerability, even a zero-day.

Our notions of defense need to adapt to this change. First, organizations need to beef up their authentication systems. There are lots of tricks that help here: two-factor authentication, one-time passwords, physical tokens, smartphone-based authentication, and so on. None of these is foolproof, but they all make credential stealing harder.

Second, organizations need to invest in breach detection and—most importantly—incident response. Credential-stealing attacks tend to bypass traditional IT security software. But attacks are complex and multi-step. Being able to detect them in process, and to respond quickly and effectively enough to kick attackers out and restore security, is essential to resilient network security today.

Vulnerabilities are still critical. Fixing vulnerabilities is still vital for security, and introducing new vulnerabilities into existing systems is still a disaster. But strong authentication and robust incident response are also critical. And an organization that skimps on these will find itself unable to keep its networks secure.

This essay originally appeared on Xconomy.

EDITED TO ADD (5/23): Portuguese translation.

Posted on May 4, 2016 at 6:51 AMView Comments

1 4 5 6 7 8 12

Sidebar photo of Bruce Schneier by Joe MacInnis.