Entries Tagged "locks"

Page 1 of 11

Copying a Key by Listening to It in Action

Researchers are using recordings of keys being used in locks to create copies.

Once they have a key-insertion audio file, SpiKey’s inference software gets to work filtering the signal to reveal the strong, metallic clicks as key ridges hit the lock’s pins [and you can hear those filtered clicks online here]. These clicks are vital to the inference analysis: the time between them allows the SpiKey software to compute the key’s inter-ridge distances and what locksmiths call the “bitting depth” of those ridges: basically, how deeply they cut into the key shaft, or where they plateau out. If a key is inserted at a nonconstant speed, the analysis can be ruined, but the software can compensate for small speed variations.

The result of all this is that SpiKey software outputs the three most likely key designs that will fit the lock used in the audio file, reducing the potential search space from 330,000 keys to just three. “Given that the profile of the key is publicly available for commonly used [pin-tumbler lock] keys, we can 3D-print the keys for the inferred bitting codes, one of which will unlock the door,” says Ramesh.

Posted on August 20, 2020 at 6:22 AMView Comments

Smart Lock Vulnerability

Yet another Internet-connected door lock is insecure:

Sold by retailers including Amazon, Walmart, and Home Depot, U-Tec’s $139.99 UltraLoq is marketed as a “secure and versatile smart deadbolt that offers keyless entry via your Bluetooth-enabled smartphone and code.”

Users can share temporary codes and ‘Ekeys’ to friends and guests for scheduled access, but according to Tripwire researcher Craig Young, a hacker able to sniff out the device’s MAC address can help themselves to an access key, too.

UltraLoq eventually fixed the vulnerabilities, but not in a way that should give you any confidence that they know what they’re doing.

EDITED TO ADD (8/12): More.

Posted on August 10, 2020 at 6:23 AMView Comments

DNSSEC Keysigning Ceremony Postponed Because of Locked Safe

Interesting collision of real-world and Internet security:

The ceremony sees several trusted internet engineers (a minimum of three and up to seven) from across the world descend on one of two secure locations — one in El Segundo, California, just south of Los Angeles, and the other in Culpeper, Virginia — both in America, every three months.

Once in place, they run through a lengthy series of steps and checks to cryptographically sign the digital key pairs used to secure the internet’s root zone. (Here’s Cloudflare‘s in-depth explanation, and IANA’s PDF step-by-step guide.)

[…]

Only specific named people are allowed to take part in the ceremony, and they have to pass through several layers of security — including doors that can only be opened through fingerprint and retinal scans — before getting in the room where the ceremony takes place.

Staff open up two safes, each roughly one-metre across. One contains a hardware security module that contains the private portion of the KSK. The module is activated, allowing the KSK private key to sign keys, using smart cards assigned to the ceremony participants. These credentials are stored in deposit boxes and tamper-proof bags in the second safe. Each step is checked by everyone else, and the event is livestreamed. Once the ceremony is complete — which takes a few hours — all the pieces are separated, sealed, and put back in the safes inside the secure facility, and everyone leaves.

But during what was apparently a check on the system on Tuesday night — the day before the ceremony planned for 1300 PST (2100 UTC) Wednesday — IANA staff discovered that they couldn’t open one of the two safes. One of the locking mechanisms wouldn’t retract and so the safe stayed stubbornly shut.

As soon as they discovered the problem, everyone involved, including those who had flown in for the occasion, were told that the ceremony was being postponed. Thanks to the complexity of the problem — a jammed safe with critical and sensitive equipment inside — they were told it wasn’t going to be possible to hold the ceremony on the back-up date of Thursday, either.

Posted on February 14, 2020 at 6:07 AMView Comments

Ridiculously Insecure Smart Lock

Tapplock sells an “unbreakable” Internet-connected lock that you can open with your fingerprint. It turns out that:

  1. The lock broadcasts its Bluetooth MAC address in the clear, and you can calculate the unlock key from it.
  2. Any Tapplock account can unlock every lock.
  3. You can open the lock with a screwdriver.

Regarding the third flaw, the manufacturer has responded that “…the lock is invincible to the people who do not have a screwdriver.”

You can’t make this stuff up.

EDITED TO ADD: The quote at the end is from a different smart lock manufacturer. Apologies for that.

Posted on June 18, 2018 at 6:19 AMView Comments

Cellebrite Unlocks iPhones for the US Government

Forbes reports that the Israeli company Cellebrite can probably unlock all iPhone models:

Cellebrite, a Petah Tikva, Israel-based vendor that’s become the U.S. government’s company of choice when it comes to unlocking mobile devices, is this month telling customers its engineers currently have the ability to get around the security of devices running iOS 11. That includes the iPhone X, a model that Forbes has learned was successfully raided for data by the Department for Homeland Security back in November 2017, most likely with Cellebrite technology.

[…]

It also appears the feds have already tried out Cellebrite tech on the most recent Apple handset, the iPhone X. That’s according to a warrant unearthed by Forbes in Michigan, marking the first known government inspection of the bleeding edge smartphone in a criminal investigation. The warrant detailed a probe into Abdulmajid Saidi, a suspect in an arms trafficking case, whose iPhone X was taken from him as he was about to leave America for Beirut, Lebanon, on November 20. The device was sent to a Cellebrite specialist at the DHS Homeland Security Investigations Grand Rapids labs and the data extracted on December 5.

This story is based on some excellent reporting, but leaves a lot of questions unanswered. We don’t know exactly what was extracted from any of the phones. Was it metadata or data, and what kind of metadata or data was it.

The story I hear is that Cellebrite hires ex-Apple engineers and moves them to countries where Apple can’t prosecute them under the DMCA or its equivalents. There’s also a credible rumor that Cellebrite’s mechanisms only defeat the mechanism that limits the number of password attempts. It does not allow engineers to move the encrypted data off the phone and run an offline password cracker. If this is true, then strong passwords are still secure.

EDITED TO ADD (3/1): Another article, with more information. It looks like there’s an arms race going on between Apple and Cellebrite. At least, if Cellebrite is telling the truth — which they may or may not be.

Posted on February 27, 2018 at 5:58 AMView Comments

Vulnerability in Amazon Key

Amazon Key is an IoT door lock that can enable one-time access codes for delivery people. To further secure that system, Amazon sells Cloud Cam, a camera that watches the door to ensure that delivery people don’t abuse their one-time access privilege.

Cloud Cam has been hacked:

But now security researchers have demonstrated that with a simple program run from any computer in Wi-Fi range, that camera can be not only disabled but frozen. A viewer watching its live or recorded stream sees only a closed door, even as their actual door is opened and someone slips inside. That attack would potentially enable rogue delivery people to stealthily steal from Amazon customers, or otherwise invade their inner sanctum.

And while the threat of a camera-hacking courier seems an unlikely way for your house to be burgled, the researchers argue it potentially strips away a key safeguard in Amazon’s security system.

Amazon is patching the system.

Posted on November 20, 2017 at 6:19 AMView Comments

1 2 3 11

Sidebar photo of Bruce Schneier by Joe MacInnis.