Entries Tagged "Internet of Things"

Page 4 of 12

Security Analysis of the LIFX Smart Light Bulb

The security is terrible:

In a very short limited amount of time, three vulnerabilities have been discovered:

  • Wifi credentials of the user have been recovered (stored in plaintext into the flash memory).
  • No security settings. The device is completely open (no secure boot, no debug interface disabled, no flash encryption).
  • Root certificate and RSA private key have been extracted.

Boing Boing post.

Posted on January 30, 2019 at 10:00 AMView Comments

Japanese Government Will Hack Citizens' IoT Devices

The Japanese government is going to run penetration tests against all the IoT devices in their country, in an effort to (1) figure out what’s insecure, and (2) help consumers secure them:

The survey is scheduled to kick off next month, when authorities plan to test the password security of over 200 million IoT devices, beginning with routers and web cameras. Devices in people’s homes and on enterprise networks will be tested alike.


The Japanese government’s decision to log into users’ IoT devices has sparked outrage in Japan. Many have argued that this is an unnecessary step, as the same results could be achieved by just sending a security alert to all users, as there’s no guarantee that the users found to be using default or easy-to-guess passwords would change their passwords after being notified in private.

However, the government’s plan has its technical merits. Many of today’s IoT and router botnets are being built by hackers who take over devices with default or easy-to-guess passwords.

Hackers can also build botnets with the help of exploits and vulnerabilities in router firmware, but the easiest way to assemble a botnet is by collecting the ones that users have failed to secure with custom passwords.

Securing these devices is often a pain, as some expose Telnet or SSH ports online without the users’ knowledge, and for which very few users know how to change passwords. Further, other devices also come with secret backdoor accounts that in some cases can’t be removed without a firmware update.

I am interested in the results of this survey. Japan isn’t very different from other industrialized nations in this regard, so their findings will be general. I am less optimistic about the country’s ability to secure all of this stuff—especially before the 2020 Summer Olympics.

Posted on January 28, 2019 at 1:40 PMView Comments

Hacking Construction Cranes

Construction cranes are vulnerable to hacking:

In our research and vulnerability discoveries, we found that weaknesses in the controllers can be (easily) taken advantage of to move full-sized machines such as cranes used in construction sites and factories. In the different attack classes that we’ve outlined, we were able to perform the attacks quickly and even switch on the controlled machine despite an operator’s having issued an emergency stop (e-stop).

The core of the problem lies in how, instead of depending on wireless, standard technologies, these industrial remote controllers rely on proprietary RF protocols, which are decades old and are primarily focused on safety at the expense of security. It wasn’t until the arrival of Industry 4.0, as well as the continuing adoption of the industrial internet of things (IIoT), that industries began to acknowledge the pressing need for security.

News article. Report.

Posted on January 22, 2019 at 5:59 AMView Comments

New IoT Security Regulations

Due to ever-evolving technological advances, manufacturers are connecting consumer goods­—from toys to light bulbs to major appliances­—to the Internet at breakneck speeds. This is the Internet of Things, and it’s a security nightmare.

The Internet of Things fuses products with communications technology to make daily life more effortless. Think Amazon’s Alexa, which not only answers questions and plays music but allows you to control your home’s lights and thermostat. Or the current generation of implanted pacemakers, which can both receive commands and send information to doctors over the Internet.

But like nearly all innovation, there are risks involved. And for products born out of the Internet of Things, this means the risk of having personal information stolen or devices being overtaken and controlled remotely. For devices that affect the world in a direct physical manner—­cars, pacemakers, thermostats­—the risks include loss of life and property.

By developing more advanced security features and building them into these products, hacks can be avoided. The problem is that there is no monetary incentive for companies to invest in the cybersecurity measures needed to keep their products secure. Consumers will buy products without proper security features, unaware that their information is vulnerable. And current liability laws make it hard to hold companies accountable for shoddy software security.

It falls upon lawmakers to create laws that protect consumers. While the US government is largely absent in this area of consumer protection, the state of California has recently stepped in and started regulating the Internet of Things, or “IoT” devices sold in the state­—and the effects will soon be felt worldwide.

California’s new SB 327 law, which will take effect in January 2020, requires all “connected devices” to have a “reasonable security feature.” The good news is that the term “connected devices” is broadly defined to include just about everything connected to the Internet. The not-so-good news is that “reasonable security” remains defined such that companies trying to avoid compliance can argue that the law is unenforceable.

The legislation requires that security features must be able to protect the device and the information on it from a variety of threats and be appropriate to both the nature of the device and the information it collects. California’s attorney general will interpret the law and define the specifics, which will surely be the subject of much lobbying by tech companies.

There’s just one specific in the law that’s not subject to the attorney general’s interpretation: default passwords are not allowed. This is a good thing; they are a terrible security practice. But it’s just one of dozens of awful “security” measures commonly found in IoT devices.

This law is not a panacea. But we have to start somewhere, and it is a start.

Though the legislation covers only the state of California, its effects will reach much further. All of us­—in the United States or elsewhere­—are likely to benefit because of the way software is written and sold.

Automobile manufacturers sell their cars worldwide, but they are customized for local markets. The car you buy in the United States is different from the same model sold in Mexico, because the local environmental laws are not the same and manufacturers optimize engines based on where the product will be sold. The economics of building and selling automobiles easily allows for this differentiation.

But software is different. Once California forces minimum security standards on IoT devices, manufacturers will have to rewrite their software to comply. At that point, it won’t make sense to have two versions: one for California and another for everywhere else. It’s much easier to maintain the single, more secure version and sell it everywhere.

The European General Data Protection Regulation (GDPR), which implemented the annoying warnings and agreements that pop up on websites, is another example of a law that extends well beyond physical borders. You might have noticed an increase in websites that force you to acknowledge you’ve read and agreed to the website’s privacy policies. This is because it is tricky to differentiate between users who are subject to the protections of the GDPR­—people physically in the European Union, and EU citizens wherever they are—­and those who are not. It’s easier to extend the protection to everyone.

Once this kind of sorting is possible, companies will, in all likelihood, return to their profitable surveillance capitalism practices on those who are still fair game. Surveillance is still the primary business model of the Internet, and companies want to spy on us and our activities as much as they can so they can sell us more things and monetize what they know about our behavior.

Insecurity is profitable only if you can get away with it worldwide. Once you can’t, you might as well make a virtue out of necessity. So everyone will benefit from the California regulation, as they would from similar security regulations enacted in any market around the world large enough to matter, just like everyone will benefit from the portion of GDPR compliance that involves data security.

Most importantly, laws like these spur innovations in cybersecurity. Right now, we have a market failure. Because the courts have traditionally not held software manufacturers liable for vulnerabilities, and because consumers don’t have the expertise to differentiate between a secure product and an insecure one, manufacturers have prioritized low prices, getting devices out on the market quickly and additional features over security.

But once a government steps in and imposes more stringent security regulations, companies have an incentive to meet those standards as quickly, cheaply, and effectively as possible. This means more security innovation, because now there’s a market for new ideas and new products. We’ve seen this pattern again and again in safety and security engineering, and we’ll see it with the Internet of Things as well.

IoT devices are more dangerous than our traditional computers because they sense the world around us, and affect that world in a direct physical manner. Increasing the cybersecurity of these devices is paramount, and it’s heartening to see both individual states and the European Union step in where the US federal government is abdicating responsibility. But we need more, and soon.

This essay previously appeared on CNN.com.

Posted on November 13, 2018 at 7:04 AMView Comments

Consumer Reports Reviews Wireless Home-Security Cameras

Consumer Reports is starting to evaluate the security of IoT devices. As part of that, it’s reviewing wireless home-security cameras.

It found significant security vulnerabilities in D-Link cameras:

In contrast, D-Link doesn’t store video from the DCS-2630L in the cloud. Instead, the camera has its own, onboard web server, which can deliver video to the user in different ways.

Users can view the video using an app, mydlink Lite. The video is encrypted, and it travels from the camera through D-Link’s corporate servers, and ultimately to the user’s phone. Users can also access the same encrypted video feed through a company web page, mydlink.com. Those are both secure methods of accessing the video.

But the D-Link camera also lets you bypass the D-Link corporate servers and access the video directly through a web browser on a laptop or other device. If you do this, the web server on the camera doesn’t encrypt the video.

If you set up this kind of remote access, the camera and unencrypted video is open to the web. They could be discovered by anyone who finds or guesses the camera’s IP address­—and if you haven’t set a strong password, a hacker might find it easy to gain access.

The real news is that Consumer Reports is able to put pressure on device manufacturers:

In response to a Consumer Reports query, D-Link said that security would be tightened through updates this fall. Consumer Reports will evaluate those updates once they are available.

This is the sort of sustained pressure we need on IoT device manufacturers.

Boing Boing link.

EDITED TO ADD (11/13): In related news, the US Federal Trade Commission is suing D-Link because their routers are so insecure. The lawsuit was filed in January 2017.

Posted on November 7, 2018 at 6:39 AMView Comments

Security Vulnerability in Internet-Connected Construction Cranes

This seems bad:

The F25 software was found to contain a capture replay vulnerability—basically an attacker would be able to eavesdrop on radio transmissions between the crane and the controller, and then send their own spoofed commands over the air to seize control of the crane.

“These devices use fixed codes that are reproducible by sniffing and re-transmission,” US-CERT explained.

“This can lead to unauthorized replay of a command, spoofing of an arbitrary message, or keeping the controlled load in a permanent ‘stop’ state.”

Here’s the CERT advisory.

Posted on October 29, 2018 at 6:18 AMView Comments

Are the Police Using Smart-Home IoT Devices to Spy on People?

IoT devices are surveillance devices, and manufacturers generally use them to collect data on their customers. Surveillance is still the business model of the Internet, and this data is used against the customers’ interests: either by the device manufacturer or by some third party the manufacturer sells the data to. Of course, this data can be used by the police as well; the purpose depends on the country.

None of this is new, and much of it was discussed in my book Data and Goliath. What is common is for Internet companies is to publish “transparency reports” that give at least general information about how police are using that data. IoT companies don’t publish those reports.

TechCrunch asked a bunch of companies about this, and basically found that no one is talking.

Boing Boing post.

Posted on October 22, 2018 at 8:13 AMView Comments

Sidebar photo of Bruce Schneier by Joe MacInnis.