Entries Tagged "bitcoin"

Page 1 of 3

On the Twitter Hack

Twitter was hacked this week. Not a few people’s Twitter accounts, but all of Twitter. Someone compromised the entire Twitter network, probably by stealing the log-in credentials of one of Twitter’s system administrators. Those are the people trusted to ensure that Twitter functions smoothly.

The hacker used that access to send tweets from a variety of popular and trusted accounts, including those of Joe Biden, Bill Gates, and Elon Musk, as part of a mundane scam — stealing bitcoin — but it’s easy to envision more nefarious scenarios. Imagine a government using this sort of attack against another government, coordinating a series of fake tweets from hundreds of politicians and other public figures the day before a major election, to affect the outcome. Or to escalate an international dispute. Done well, it would be devastating.

Whether the hackers had access to Twitter direct messages is not known. These DMs are not end-to-end encrypted, meaning that they are unencrypted inside Twitter’s network and could have been available to the hackers. Those messages — between world leaders, industry CEOs, reporters and their sources, heath organizations — are much more valuable than bitcoin. (If I were a national-intelligence agency, I might even use a bitcoin scam to mask my real intelligence-gathering purpose.) Back in 2018, Twitter said it was exploring encrypting those messages, but it hasn’t yet.

Internet communications platforms — such as Facebook, Twitter, and YouTube — are crucial in today’s society. They’re how we communicate with one another. They’re how our elected leaders communicate with us. They are essential infrastructure. Yet they are run by for-profit companies with little government oversight. This is simply no longer sustainable. Twitter and companies like it are essential to our national dialogue, to our economy, and to our democracy. We need to start treating them that way, and that means both requiring them to do a better job on security and breaking them up.

In the Twitter case this week, the hacker’s tactics weren’t particularly sophisticated. We will almost certainly learn about security lapses at Twitter that enabled the hack, possibly including a SIM-swapping attack that targeted an employee’s cellular service provider, or maybe even a bribed insider. The FBI is investigating.

This kind of attack is known as a “class break.” Class breaks are endemic to computerized systems, and they’re not something that we as users can defend against with better personal security. It didn’t matter whether individual accounts had a complicated and hard-to-remember password, or two-factor authentication. It didn’t matter whether the accounts were normally accessed via a Mac or a PC. There was literally nothing any user could do to protect against it.

Class breaks are security vulnerabilities that break not just one system, but an entire class of systems. They might exploit a vulnerability in a particular operating system that allows an attacker to take remote control of every computer that runs on that system’s software. Or a vulnerability in internet-enabled digital video recorders and webcams that allows an attacker to recruit those devices into a massive botnet. Or a single vulnerability in the Twitter network that allows an attacker to take over every account.

For Twitter users, this attack was a double whammy. Many people rely on Twitter’s authentication systems to know that someone who purports to be a certain celebrity, politician, or journalist is really that person. When those accounts were hijacked, trust in that system took a beating. And then, after the attack was discovered and Twitter temporarily shut down all verified accounts, the public lost a vital source of information.

There are many security technologies companies like Twitter can implement to better protect themselves and their users; that’s not the issue. The problem is economic, and fixing it requires doing two things. One is regulating these companies, and requiring them to spend more money on security. The second is reducing their monopoly power.

The security regulations for banks are complex and detailed. If a low-level banking employee were caught messing around with people’s accounts, or if she mistakenly gave her log-in credentials to someone else, the bank would be severely fined. Depending on the details of the incident, senior banking executives could be held personally liable. The threat of these actions helps keep our money safe. Yes, it costs banks money; sometimes it severely cuts into their profits. But the banks have no choice.

The opposite is true for these tech giants. They get to decide what level of security you have on your accounts, and you have no say in the matter. If you are offered security and privacy options, it’s because they decided you can have them. There is no regulation. There is no accountability. There isn’t even any transparency. Do you know how secure your data is on Facebook, or in Apple’s iCloud, or anywhere? You don’t. No one except those companies do. Yet they’re crucial to the country’s national security. And they’re the rare consumer product or service allowed to operate without significant government oversight.

For example, President Donald Trump’s Twitter account wasn’t hacked as Joe Biden’s was, because that account has “special protections,” the details of which we don’t know. We also don’t know what other world leaders have those protections, or the decision process surrounding who gets them. Are they manual? Can they scale? Can all verified accounts have them? Your guess is as good as mine.

In addition to security measures, the other solution is to break up the tech monopolies. Companies like Facebook and Twitter have so much power because they are so large, and they face no real competition. This is a national-security risk as well as a personal-security risk. Were there 100 different Twitter-like companies, and enough compatibility so that all their feeds could merge into one interface, this attack wouldn’t have been such a big deal. More important, the risk of a similar but more politically targeted attack wouldn’t be so great. If there were competition, different platforms would offer different security options, as well as different posting rules, different authentication guidelines — different everything. Competition is how our economy works; it’s how we spur innovation. Monopolies have more power to do what they want in the quest for profits, even if it harms people along the way.

This wasn’t Twitter’s first security problem involving trusted insiders. In 2017, on his last day of work, an employee shut down President Donald Trump’s account. In 2019, two people were charged with spying for the Saudi government while they were Twitter employees.

Maybe this hack will serve as a wake-up call. But if past incidents involving Twitter and other companies are any indication, it won’t. Underspending on security, and letting society pay the eventual price, is far more profitable. I don’t blame the tech companies. Their corporate mandate is to make as much money as is legally possible. Fixing this requires changes in the law, not changes in the hearts of the company’s leaders.

This essay previously appeared on TheAtlantic.com.

Posted on July 20, 2020 at 8:49 AMView Comments

Dark Web Site Taken Down without Breaking Encryption

The US Department of Justice unraveled a dark web child-porn website, leading to the arrest of 337 people in at least 18 countries. This was all accomplished not through any backdoors in communications systems, but by analyzing the bitcoin transactions and following the money:

Welcome to Video made money by charging fees in bitcoin, and gave each user a unique bitcoin wallet address when they created an account. Son operated the site as a Tor hidden service, a dark web site with a special address that helps mask the identity of the site’s host and its location. But Son and others made mistakes that allowed law enforcement to track them. For example, according to the indictment, very basic assessments of the Welcome to Video website revealed two unconcealed IP addresses managed by a South Korean internet service provider and assigned to an account that provided service to Son’s home address. When agents searched Son’s residence, they found the server running Welcome to Video.

To “follow the money,” as officials put it in Wednesday’s press conference, law enforcement agents sent fairly small amounts of bitcoin­ — roughly equivalent at the time to $125 to $290­ — to the bitcoin wallets Welcome to Video listed for payments. Since the bitcoin blockchain leaves all transactions visible and verifiable, they could observe the currency in these wallets being transferred to another wallet. Law enforcement learned from a bitcoin exchange that the second wallet was registered to Son with his personal phone number and one of his personal email addresses.

Remember this the next time some law enforcement official tells us that they’re powerless to investigate crime without breaking cryptography for everyone.

More news articles. The indictment is here. Some of it is pretty horrifying to read.

Posted on October 25, 2019 at 6:14 AMView Comments

Blockchain and Trust

In his 2008 white paper that first proposed bitcoin, the anonymous Satoshi Nakamoto concluded with: “We have proposed a system for electronic transactions without relying on trust.” He was referring to blockchain, the system behind bitcoin cryptocurrency. The circumvention of trust is a great promise, but it’s just not true. Yes, bitcoin eliminates certain trusted intermediaries that are inherent in other payment systems like credit cards. But you still have to trust bitcoin — and everything about it.

Much has been written about blockchains and how they displace, reshape, or eliminate trust. But when you analyze both blockchain and trust, you quickly realize that there is much more hype than value. Blockchain solutions are often much worse than what they replace.

First, a caveat. By blockchain, I mean something very specific: the data structures and protocols that make up a public blockchain. These have three essential elements. The first is a distributed (as in multiple copies) but centralized (as in there’s only one) ledger, which is a way of recording what happened and in what order. This ledger is public, meaning that anyone can read it, and immutable, meaning that no one can change what happened in the past.

The second element is the consensus algorithm, which is a way to ensure all the copies of the ledger are the same. This is generally called mining; a critical part of the system is that anyone can participate. It is also distributed, meaning that you don’t have to trust any particular node in the consensus network. It can also be extremely expensive, both in data storage and in the energy required to maintain it. Bitcoin has the most expensive consensus algorithm the world has ever seen, by far.

Finally, the third element is the currency. This is some sort of digital token that has value and is publicly traded. Currency is a necessary element of a blockchain to align the incentives of everyone involved. Transactions involving these tokens are stored on the ledger.

Private blockchains are completely uninteresting. (By this, I mean systems that use the blockchain data structure but don’t have the above three elements.) In general, they have some external limitation on who can interact with the blockchain and its features. These are not anything new; they’re distributed append-only data structures with a list of individuals authorized to add to it. Consensus protocols have been studied in distributed systems for more than 60 years. Append-only data structures have been similarly well covered. They’re blockchains in name only, and — as far as I can tell — the only reason to operate one is to ride on the blockchain hype.

All three elements of a public blockchain fit together as a single network that offers new security properties. The question is: Is it actually good for anything? It’s all a matter of trust.

Trust is essential to society. As a species, humans are wired to trust one another. Society can’t function without trust, and the fact that we mostly don’t even think about it is a measure of how well trust works.

The word “trust” is loaded with many meanings. There’s personal and intimate trust. When we say we trust a friend, we mean that we trust their intentions and know that those intentions will inform their actions. There’s also the less intimate, less personal trust — we might not know someone personally, or know their motivations, but we can trust their future actions. Blockchain enables this sort of trust: We don’t know any bitcoin miners, for example, but we trust that they will follow the mining protocol and make the whole system work.

Most blockchain enthusiasts have a unnaturally narrow definition of trust. They’re fond of catchphrases like “in code we trust,” “in math we trust,” and “in crypto we trust.” This is trust as verification. But verification isn’t the same as trust.

In 2012, I wrote a book about trust and security, Liars and Outliers. In it, I listed four very general systems our species uses to incentivize trustworthy behavior. The first two are morals and reputation. The problem is that they scale only to a certain population size. Primitive systems were good enough for small communities, but larger communities required delegation, and more formalism.

The third is institutions. Institutions have rules and laws that induce people to behave according to the group norm, imposing sanctions on those who do not. In a sense, laws formalize reputation. Finally, the fourth is security systems. These are the wide varieties of security technologies we employ: door locks and tall fences, alarm systems and guards, forensics and audit systems, and so on.

These four elements work together to enable trust. Take banking, for example. Financial institutions, merchants, and individuals are all concerned with their reputations, which prevents theft and fraud. The laws and regulations surrounding every aspect of banking keep everyone in line, including backstops that limit risks in the case of fraud. And there are lots of security systems in place, from anti-counterfeiting technologies to internet-security technologies.

In his 2018 book, Blockchain and the New Architecture of Trust, Kevin Werbach outlines four different “trust architectures.” The first is peer-to-peer trust. This basically corresponds to my morals and reputational systems: pairs of people who come to trust each other. His second is leviathan trust, which corresponds to institutional trust. You can see this working in our system of contracts, which allows parties that don’t trust each other to enter into an agreement because they both trust that a government system will help resolve disputes. His third is intermediary trust. A good example is the credit card system, which allows untrusting buyers and sellers to engage in commerce. His fourth trust architecture is distributed trust. This is emergent trust in the particular security system that is blockchain.

What blockchain does is shift some of the trust in people and institutions to trust in technology. You need to trust the cryptography, the protocols, the software, the computers and the network. And you need to trust them absolutely, because they’re often single points of failure.

When that trust turns out to be misplaced, there is no recourse. If your bitcoin exchange gets hacked, you lose all of your money. If your bitcoin wallet gets hacked, you lose all of your money. If you forget your login credentials, you lose all of your money. If there’s a bug in the code of your smart contract, you lose all of your money. If someone successfully hacks the blockchain security, you lose all of your money. In many ways, trusting technology is harder than trusting people. Would you rather trust a human legal system or the details of some computer code you don’t have the expertise to audit?

Blockchain enthusiasts point to more traditional forms of trust — bank processing fees, for example — as expensive. But blockchain trust is also costly; the cost is just hidden. For bitcoin, that’s the cost of the additional bitcoin mined, the transaction fees, and the enormous environmental waste.

Blockchain doesn’t eliminate the need to trust human institutions. There will always be a big gap that can’t be addressed by technology alone. People still need to be in charge, and there is always a need for governance outside the system. This is obvious in the ongoing debate about changing the bitcoin block size, or in fixing the DAO attack against Ethereum. There’s always a need to override the rules, and there’s always a need for the ability to make permanent rules changes. As long as hard forks are a possibility — that’s when the people in charge of a blockchain step outside the system to change it — people will need to be in charge.

Any blockchain system will have to coexist with other, more conventional systems. Modern banking, for example, is designed to be reversible. Bitcoin is not. That makes it hard to make the two compatible, and the result is often an insecurity. Steve Wozniak was scammed out of $70K in bitcoin because he forgot this.

Blockchain technology is often centralized. Bitcoin might theoretically be based on distributed trust, but in practice, that’s just not true. Just about everyone using bitcoin has to trust one of the few available wallets and use one of the few available exchanges. People have to trust the software and the operating systems and the computers everything is running on. And we’ve seen attacks against wallets and exchanges. We’ve seen Trojans and phishing and password guessing. Criminals have even used flaws in the system that people use to repair their cell phones to steal bitcoin.

Moreover, in any distributed trust system, there are backdoor methods for centralization to creep back in. With bitcoin, there are only a few miners of consequence. There’s one company that provides most of the mining hardware. There are only a few dominant exchanges. To the extent that most people interact with bitcoin, it is through these centralized systems. This also allows for attacks against blockchain-based systems.

These issues are not bugs in current blockchain applications, they’re inherent in how blockchain works. Any evaluation of the security of the system has to take the whole socio-technical system into account. Too many blockchain enthusiasts focus on the technology and ignore the rest.

To the extent that people don’t use bitcoin, it’s because they don’t trust bitcoin. That has nothing to do with the cryptography or the protocols. In fact, a system where you can lose your life savings if you forget your key or download a piece of malware is not particularly trustworthy. No amount of explaining how SHA-256 works to prevent double-spending will fix that.

Similarly, to the extent that people do use blockchains, it is because they trust them. People either own bitcoin or not based on reputation; that’s true even for speculators who own bitcoin simply because they think it will make them rich quickly. People choose a wallet for their cryptocurrency, and an exchange for their transactions, based on reputation. We even evaluate and trust the cryptography that underpins blockchains based on the algorithms’ reputation.

To see how this can fail, look at the various supply-chain security systems that are using blockchain. A blockchain isn’t a necessary feature of any of them. The reasons they’re successful is that everyone has a single software platform to enter their data in. Even though the blockchain systems are built on distributed trust, people don’t necessarily accept that. For example, some companies don’t trust the IBM/Maersk system because it’s not their blockchain.

Irrational? Maybe, but that’s how trust works. It can’t be replaced by algorithms and protocols. It’s much more social than that.

Still, the idea that blockchains can somehow eliminate the need for trust persists. Recently, I received an email from a company that implemented secure messaging using blockchain. It said, in part: “Using the blockchain, as we have done, has eliminated the need for Trust.” This sentiment suggests the writer misunderstands both what blockchain does and how trust works.

Do you need a public blockchain? The answer is almost certainly no. A blockchain probably doesn’t solve the security problems you think it solves. The security problems it solves are probably not the ones you have. (Manipulating audit data is probably not your major security risk.) A false trust in blockchain can itself be a security risk. The inefficiencies, especially in scaling, are probably not worth it. I have looked at many blockchain applications, and all of them could achieve the same security properties without using a blockchain­ — of course, then they wouldn’t have the cool name.

Honestly, cryptocurrencies are useless. They’re only used by speculators looking for quick riches, people who don’t like government-backed currencies, and criminals who want a black-market way to exchange money.

To answer the question of whether the blockchain is needed, ask yourself: Does the blockchain change the system of trust in any meaningful way, or just shift it around? Does it just try to replace trust with verification? Does it strengthen existing trust relationships, or try to go against them? How can trust be abused in the new system, and is this better or worse than the potential abuses in the old system? And lastly: What would your system look like if you didn’t use blockchain at all?

If you ask yourself those questions, it’s likely you’ll choose solutions that don’t use public blockchain. And that’ll be a good thing — especially when the hype dissipates.

This essay previously appeared on Wired.com.

EDITED TO ADD (2/11): Two commentaries on my essay.

I have wanted to write this essay for over a year. The impetus to finally do it came from an invite to speak at the Hyperledger Global Forum in December. This essay is a version of the talk I wrote for that event, made more accessible to a general audience.

It seems to be the season for blockchain takedowns. James Waldo has an excellent essay in Queue. And Nicholas Weaver gave a talk at the Enigma Conference, summarized here. It’s a shortened version of this talk.

EDITED TO ADD (2/17): Reddit thread.

EDITED TO ADD (3/1): Two more articles.

Posted on February 12, 2019 at 6:25 AMView Comments

New Attack Against Electrum Bitcoin Wallets

This is clever:

How the attack works:

  • Attacker added tens of malicious servers to the Electrum wallet network.
  • Users of legitimate Electrum wallets initiate a Bitcoin transaction.
  • If the transaction reaches one of the malicious servers, these servers reply with an error message that urges users to download a wallet app update from a malicious website (GitHub repo).
  • User clicks the link and downloads the malicious update.
  • When the user opens the malicious Electrum wallet, the app asks the user for a two-factor authentication (2FA) code. This is a red flag, as these 2FA codes are only requested before sending funds, and not at wallet startup.
  • The malicious Electrum wallet uses the 2FA code to steal the user’s funds and transfer them to the attacker’s Bitcoin addresses.

The problem here is that Electrum servers are allowed to trigger popups with custom text inside users’ wallets.

Posted on January 7, 2019 at 6:13 AMView Comments

Nicholas Weaver on Cryptocurrencies

This is well-worth reading (non-paywalled version). Here’s the opening:

Cryptocurrencies, although a seemingly interesting idea, are simply not fit for purpose. They do not work as currencies, they are grossly inefficient, and they are not meaningfully distributed in terms of trust. Risks involving cryptocurrencies occur in four major areas: technical risks to participants, economic risks to participants, systemic risks to the cryptocurrency ecosystem, and societal risks.

I haven’t written much about cryptocurrencies, but I share Weaver’s skepticism.

EDITED TO ADD (8/2): Paul Krugman on cryptocurrencies.

Posted on July 24, 2018 at 6:29 AMView Comments

Regulating Bitcoin

Ross Anderson has a new paper on cryptocurrency exchanges. From his blog:

Bitcoin Redux explains what’s going wrong in the world of cryptocurrencies. The bitcoin exchanges are developing into a shadow banking system, which do not give their customers actual bitcoin but rather display a “balance” and allow them to transact with others. However if Alice sends Bob a bitcoin, and they’re both customers of the same exchange, it just adjusts their balances rather than doing anything on the blockchain. This is an e-money service, according to European law, but is the law enforced? Not where it matters. We’ve been looking at the details.

The paper.

Posted on June 5, 2018 at 6:32 AMView Comments

Tracing Stolen Bitcoin

Ross Anderson has a really interesting paper on tracing stolen bitcoin. From a blog post:

Previous attempts to track tainted coins had used either the “poison” or the “haircut” method. Suppose I open a new address and pay into it three stolen bitcoin followed by seven freshly-mined ones. Then under poison, the output is ten stolen bitcoin, while under haircut it’s ten bitcoin that are marked 30% stolen. After thousands of blocks, poison tainting will blacklist millions of addresses, while with haircut the taint gets diffused, so neither is very effective at tracking stolen property. Bitcoin due-diligence services supplant haircut taint tracking with AI/ML, but the results are still not satisfactory.

We discovered that, back in 1816, the High Court had to tackle this problem in Clayton’s case, which involved the assets and liabilities of a bank that had gone bust. The court ruled that money must be tracked through accounts on the basis of first-in, first out (FIFO); the first penny into an account goes to satisfy the first withdrawal, and so on.

Ilia Shumailov has written software that applies FIFO tainting to the blockchain and the results are impressive, with a massive improvement in precision. What’s more, FIFO taint tracking is lossless, unlike haircut; so in addition to tracking a stolen coin forward to find where it’s gone, you can start with any UTXO and trace it backwards to see its entire ancestry. It’s not just good law; it’s good computer science too.

Posted on March 28, 2018 at 6:30 AM

"Crypto" Is Being Redefined as Cryptocurrencies

I agree with Lorenzo Franceschi-Bicchierai, “Cryptocurrencies aren’t ‘crypto’“:

Lately on the internet, people in the world of Bitcoin and other digital currencies are starting to use the word “crypto” as a catch-all term for the lightly regulated and burgeoning world of digital currencies in general, or for the word “cryptocurrency” — which probably shouldn’t even be called “currency,” by the way.

[…]

To be clear, I’m not the only one who is mad about this. Bitcoin and other technologies indeed do use cryptography: all cryptocurrency transactions are secured by a “public key” known to all and a “private key” known only to one party­ — this is the basis for a swath of cryptographic approaches (known as public key, or asymmetric cryptography) like PGP. But cryptographers say that’s not really their defining trait.

“Most cryptocurrency barely has anything to do with serious cryptography,” Matthew Green, a renowned computer scientist who studies cryptography, told me via email. “Aside from the trivial use of digital signatures and hash functions, it’s a stupid name.”

It is a stupid name.

Posted on December 4, 2017 at 9:14 AMView Comments

1 2 3

Sidebar photo of Bruce Schneier by Joe MacInnis.