Entries Tagged "academic papers"

Page 4 of 75

Using EM Waves to Detect Malware

I don’t even know what I think about this. Researchers have developed a malware detection system that uses EM waves: “Obfuscation Revealed: Leveraging Electromagnetic Signals for Obfuscated Malware Classification.”

Abstract: The Internet of Things (IoT) is constituted of devices that are exponentially growing in number and in complexity. They use numerous customized firmware and hardware, without taking into consideration security issues, which make them a target for cybercriminals, especially malware authors.

We will present a novel approach of using side channel information to identify the kinds of threats that are targeting the device. Using our approach, a malware analyst is able to obtain precise knowledge about malware type and identity, even in the presence of obfuscation techniques which may prevent static or symbolic binary analysis. We recorded 100,000 measurement traces from an IoT device infected by various in-the-wild malware samples and realistic benign activity. Our method does not require any modification on the target device. Thus, it can be deployed independently from the resources available without any overhead. Moreover, our approach has the advantage that it can hardly be detected and evaded by the malware authors. In our experiments, we were able to predict three generic malware types (and one benign class) with an accuracy of 99.82%. Even more, our results show that we are able to classify altered malware samples with unseen obfuscation techniques during the training phase, and to determine what kind of obfuscations were applied to the binary, which makes our approach particularly useful for malware analysts.

This seems impossible. It’s research, not a commercial product. But it’s fascinating if true.

Posted on January 14, 2022 at 6:13 AMView Comments

Friday Squid Blogging: Deep-Dwelling Squid

We have discovered a squid—(Oegopsida, Magnapinnidae, Magnapinna sp.)—that lives at 6,000 meters deep.

:They’re really weird,” says Vecchione. “They drift along with their arms spread out and these really long, skinny, spaghetti-like extensions dangling down underneath them.” Microscopic suckers on those filaments enable the squid to capture their prey.

But the squid that Jamieson and Vecchione saw in the footage captured 6,212 meters below the ocean’s surface is a small one. They estimate that its mantle measured 10 centimeters long—­about a third the size of the largest-known magnapinnid. And the characteristically long extensions observed on other magnapinnids were nowhere to be seen in the video. That could mean, says Vecchione, that this bigfin squid was a juvenile.

Research paper.

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Read my blog posting guidelines here.

Posted on December 31, 2021 at 4:03 PMView Comments

Hiding Vulnerabilities in Source Code

Really interesting research demonstrating how to hide vulnerabilities in source code by manipulating how Unicode text is displayed. It’s really clever, and not the sort of attack one would normally think about.

From Ross Anderson’s blog:

We have discovered ways of manipulating the encoding of source code files so that human viewers and compilers see different logic. One particularly pernicious method uses Unicode directionality override characters to display code as an anagram of its true logic. We’ve verified that this attack works against C, C++, C#, JavaScript, Java, Rust, Go, and Python, and suspect that it will work against most other modern languages.

This potentially devastating attack is tracked as CVE-2021-42574, while a related attack that uses homoglyphs –- visually similar characters –- is tracked as CVE-2021-42694. This work has been under embargo for a 99-day period, giving time for a major coordinated disclosure effort in which many compilers, interpreters, code editors, and repositories have implemented defenses.

Website for the attack. Rust security advisory.

Brian Krebs has a blog post.

EDITED TO ADD (11/12): An older paper on similar issues.

Posted on November 1, 2021 at 10:58 AMView Comments

Security Risks of Client-Side Scanning

Even before Apple made its announcement, law enforcement shifted their battle for backdoors to client-side scanning. The idea is that they wouldn’t touch the cryptography, but instead eavesdrop on communications and systems before encryption or after decryption. It’s not a cryptographic backdoor, but it’s still a backdoor—and brings with it all the insecurities of a backdoor.

I’m part of a group of cryptographers that has just published a paper discussing the security risks of such a system. (It’s substantially the same group that wrote a similar paper about key escrow in 1997, and other “exceptional access” proposals in 2015. We seem to have to do this every decade or so.) In our paper, we examine both the efficacy of such a system and its potential security failures, and conclude that it’s a really bad idea.

We had been working on the paper well before Apple’s announcement. And while we do talk about Apple’s system, our focus is really on the idea in general.

Ross Anderson wrote a blog post on the paper. (It’s always great when Ross writes something. It means I don’t have to.) So did Susan Landau. And there’s press coverage in the New York Times, the Guardian, Computer Weekly, the Financial Times, Forbes, El Pais (English translation), NRK (English translation), and—this is the best article of them all—the Register. See also this analysis of the law and politics of client-side scanning from last year.

Posted on October 15, 2021 at 9:30 AMView Comments

Recovering Real Faces from Face-Generation ML System

New paper: “This Person (Probably) Exists. Identity Membership Attacks Against GAN Generated Faces.

Abstract: Recently, generative adversarial networks (GANs) have achieved stunning realism, fooling even human observers. Indeed, the popular tongue-in-cheek website http://thispersondoesnotexist.com, taunts users with GAN generated images that seem too real to believe. On the other hand, GANs do leak information about their training data, as evidenced by membership attacks recently demonstrated in the literature. In this work, we challenge the assumption that GAN faces really are novel creations, by constructing a successful membership attack of a new kind. Unlike previous works, our attack can accurately discern samples sharing the same identity as training samples without being the same samples. We demonstrate the interest of our attack across several popular face datasets and GAN training procedures. Notably, we show that even in the presence of significant dataset diversity, an over represented person can pose a privacy concern.

News article. Slashdot post.

Posted on October 14, 2021 at 9:56 AMView Comments

Identifying Computer-Generated Faces

It’s the eyes:

The researchers note that in many cases, users can simply zoom in on the eyes of a person they suspect may not be real to spot the pupil irregularities. They also note that it would not be difficult to write software to spot such errors and for social media sites to use it to remove such content. Unfortunately, they also note that now that such irregularities have been identified, the people creating the fake pictures can simply add a feature to ensure the roundness of pupils.

And the arms race continues….

Research paper.

Posted on September 15, 2021 at 10:31 AMView Comments

Using “Master Faces” to Bypass Face-Recognition Authenticating Systems

Fascinating research: “Generating Master Faces for Dictionary Attacks with a Network-Assisted Latent Space Evolution.”

Abstract: A master face is a face image that passes face-based identity-authentication for a large portion of the population. These faces can be used to impersonate, with a high probability of success, any user, without having access to any user-information. We optimize these faces, by using an evolutionary algorithm in the latent embedding space of the StyleGAN face generator. Multiple evolutionary strategies are compared, and we propose a novel approach that employs a neural network in order to direct the search in the direction of promising samples, without adding fitness evaluations. The results we present demonstrate that it is possible to obtain a high coverage of the population (over 40%) with less than 10 master faces, for three leading deep face recognition systems.

Two good articles.

Posted on August 6, 2021 at 6:44 AMView Comments

Storing Encrypted Photos in Google’s Cloud

New paper: “Encrypted Cloud Photo Storage Using Google Photos.”

Abstract: Cloud photo services are widely used for persistent, convenient, and often free photo storage, which is especially useful for mobile devices. As users store more and more photos in the cloud, significant privacy concerns arise because even a single compromise of a user’s credentials give attackers unfettered access to all of the user’s photos. We have created Easy Secure Photos (ESP) to enable users to protect their photos on cloud photo services such as Google Photos. ESP introduces a new client-side encryption architecture that includes a novel format-preserving image encryption algorithm, an encrypted thumbnail display mechanism, and a usable key management system. ESP encrypts image data such that the result is still a standard format image like JPEG that is compatible with cloud photo services. ESP efficiently generates and displays encrypted thumbnails for fast and easy browsing of photo galleries from trusted user devices. ESP’s key management makes it simple to authorize multiple user devices to view encrypted image content via a process similar to device pairing, but using the cloud photo service as a QR code communication channel. We have implemented ESP in a popular Android photos app for use with Google Photos and demonstrate that it is easy to use and provides encryption functionality transparently to users, maintains good interactive performance and image quality while providing strong privacy guarantees, and retains the sharing and storage benefits of Google Photos without any changes to the cloud service

Posted on July 30, 2021 at 6:34 AMView Comments

Sidebar photo of Bruce Schneier by Joe MacInnis.