## Massive MIMO Cryptosystem

New paper: "Physical-Layer Cryptography Through Massive MIMO."

Abstract:We propose the new technique of physical-layer cryptography based on using a massive MIMO channel as a key between the sender and desired receiver, which need not be secret. The goal is for low-complexity encoding and decoding by the desired transmitter-receiver pair, whereas decoding by an eavesdropper is hard in terms of prohibitive complexity. The decoding complexity is analyzed by mapping the massive MIMO system to a lattice. We show that the eavesdropper's decoder for the MIMO system with M-PAM modulation is equivalent to solving standard lattice problems that are conjectured to be of exponential complexity for both classical and quantum computers. Hence, under the widely-held conjecture that standard lattice problems are hard to solve in the worst-case, the proposed encryption scheme has a more robust notion of security than that of the most common encryption methods used today such as RSA and Diffie-Hellman. Additionally, we show that this scheme could be used to securely communicate without a pre-shared secret and little computational overhead. Thus, the massive MIMO system provides for low-complexity encryption commensurate with the most sophisticated forms of application-layer encryption by exploiting the physical layer properties of the radio channel.

MIMO stands for "multiple-input multiple-output." I had to look that up.

In general, I'm not optimistic about the security of these sorts of systems. Whenever non-cryptographers come up with cryptographic algorithms based on some novel problem that's hard in their area of research, invariably there are pretty easy cryptographic attacks.

So consider this a good research exercise for all budding cryptanalysts out there.

Posted on October 15, 2013 at 6:27 AM • 32 Comments

## Leave a comment