Entries Tagged "web"

Page 6 of 14

Data at Rest vs. Data in Motion

For a while now, I’ve pointed out that cryptography is singularly ill-suited to solve the major network security problems of today: denial-of-service attacks, website defacement, theft of credit card numbers, identity theft, viruses and worms, DNS attacks, network penetration, and so on.

Cryptography was invented to protect communications: data in motion. This is how cryptography was used throughout most of history, and this is how the militaries of the world developed the science. Alice was the sender, Bob the receiver, and Eve the eavesdropper. Even when cryptography was used to protect stored data—data at rest—it was viewed as a form of communication. In “Applied Cryptography,” I described encrypting stored data in this way: “a stored message is a way for someone to communicate with himself through time.” Data storage was just a subset of data communication.

In modern networks, the difference is much more profound. Communications are immediate and instantaneous. Encryption keys can be ephemeral, and systems like the STU-III telephone can be designed such that encryption keys are created at the beginning of a call and destroyed as soon as the call is completed. Data storage, on the other hand, occurs over time. Any encryption keys must exist as long as the encrypted data exists. And storing those keys becomes as important as storing the unencrypted data was. In a way, encryption doesn’t reduce the number of secrets that must be stored securely; it just makes them much smaller.

Historically, the reason key management worked for stored data was that the key could be stored in a secure location: the human brain. People would remember keys and, barring physical and emotional attacks on the people themselves, would not divulge them. In a sense, the keys were stored in a “computer” that was not attached to any network. And there they were safe.

This whole model falls apart on the Internet. Much of the data stored on the Internet is only peripherally intended for use by people; it’s primarily intended for use by other computers. And therein lies the problem. Keys can no longer be stored in people’s brains. They need to be stored on the same computer, or at least the network, that the data resides on. And that is much riskier.

Let’s take a concrete example: credit card databases associated with websites. Those databases are not encrypted because it doesn’t make any sense. The whole point of storing credit card numbers on a website is so it’s accessible—so each time I buy something, I don’t have to type it in again. The website needs to dynamically query the database and retrieve the numbers, millions of times a day. If the database were encrypted, the website would need the key. But if the key were on the same network as the data, what would be the point of encrypting it? Access to the website equals access to the database in either case. Security is achieved by good access control on the website and database, not by encrypting the data.

The same reasoning holds true elsewhere on the Internet as well. Much of the Internet’s infrastructure happens automatically, without human intervention. This means that any encryption keys need to reside in software on the network, making them vulnerable to attack. In many cases, the databases are queried so often that they are simply left in plaintext, because doing otherwise would cause significant performance degradation. Real security in these contexts comes from traditional computer security techniques, not from cryptography.

Cryptography has inherent mathematical properties that greatly favor the defender. Adding a single bit to the length of a key adds only a slight amount of work for the defender, but doubles the amount of work the attacker has to do. Doubling the key length doubles the amount of work the defender has to do (if that—I’m being approximate here), but increases the attacker’s workload exponentially. For many years, we have exploited that mathematical imbalance.

Computer security is much more balanced. There’ll be a new attack, and a new defense, and a new attack, and a new defense. It’s an arms race between attacker and defender. And it’s a very fast arms race. New vulnerabilities are discovered all the time. The balance can tip from defender to attacker overnight, and back again the night after. Computer security defenses are inherently very fragile.

Unfortunately, this is the model we’re stuck with. No matter how good the cryptography is, there is some other way to break into the system. Recall how the FBI read the PGP-encrypted email of a suspected Mafia boss several years ago. They didn’t try to break PGP; they simply installed a keyboard sniffer on the target’s computer. Notice that SSL- and TLS-encrypted web communications are increasingly irrelevant in protecting credit card numbers; criminals prefer to steal them by the hundreds of thousands from back-end databases.

On the Internet, communications security is much less important than the security of the endpoints. And increasingly, we can’t rely on cryptography to solve our security problems.

This essay originally appeared on DarkReading. I wrote it in 2006, but lost it on my computer for four years. I hate it when that happens.

EDITED TO ADD (7/14): As several readers pointed out, I overstated my case when I said that encrypting credit card databases, or any database in constant use, is useless. In fact, there is value in encrypting those databases, especially if the encryption appliance is separate from the database server. In this case, the attacker has to steal both the encryption key and the database. That’s a harder hacking problem, and this is why credit-card database encryption is mandated within the PCI security standard. Given how good encryption performance is these days, it’s a smart idea. But while encryption makes it harder to steal the data, it is only harder in a computer-security sense and not in a cryptography sense.

Posted on June 30, 2010 at 12:53 PMView Comments

AT&T's iPad Security Breach

I didn’t write about the recent security breach that disclosed tens of thousands of e-mail addresses and ICC-IDs of iPad users because, well, there was nothing terribly interesting about it. It was yet another web security breach.

Right after the incident, though, I was being interviewed by a reporter that wanted to know what the ramifications of the breach were. He specifically wanted to know if anything could be done with those ICC-IDs, and if the disclosure of that information was worse than people thought. He didn’t like the answer I gave him, which is that no one knows yet: that it’s too early to know the full effects of that information disclosure, and that both the good guys and the bad guys would be figuring it out in the coming weeks. And, that it’s likely that there were further security implications of the breach.

Seems like there were:

The problem is that ICC-IDs—unique serial numbers that identify each SIM card—can often be converted into IMSIs. While the ICC-ID is nonsecret—it’s often found printed on the boxes of cellphone/SIM bundles—the IMSI is somewhat secret. In theory, knowing an ICC-ID shouldn’t be enough to determine an IMSI. The phone companies do need to know which IMSI corresponds to which ICC-ID, but this should be done by looking up the values in a big database.

In practice, however, many phone companies simply calculate the IMSI from the ICC-ID. This calculation is often very simple indeed, being little more complex than “combine this hard-coded value with the last nine digits of the ICC-ID.” So while the leakage of AT&T’s customers’ ICC-IDs should be harmless, in practice, it could reveal a secret ID.

What can be done with that secret ID? Quite a lot, it turns out. The IMSI is sent by the phone to the network when first signing on to the network; it’s used by the network to figure out which call should be routed where. With someone else’s IMSI, an attacker can determine the person’s name and phone number, and even track his or her position. It also opens the door to active attacks—creating fake cell towers that a victim’s phone will connect to, enabling every call and text message to be eavesdropped.

More to come, I’m sure.

And that’s really the point: we all want to know—right away—the effects of a security vulnerability, but often we don’t and can’t. It takes time before the full effects are known, sometimes a lot of time.

And in related news, the image redaction that went along with some of the breach reporting wasn’t very good.

Posted on June 21, 2010 at 5:27 AMView Comments

Detecting Browser History

Interesting research.

Main results:

[…]

  • We analyzed the results from over a quarter of a million people who ran our tests in the last few months, and found that we can detect browsing histories for over 76% of them. All major browsers allow their users’ history to be detected, but it seems that users of the more modern browsers such as Safari and Chrome are more affected; we detected visited sites for 82% of Safari users and 94% of Chrome users.

    […]

  • While our tests were quite limited, for our test of 5000 most popular websites, we detected an average of 63 visited locations (13 sites and 50 subpages on those sites); the medians were 8 and 17 respectively.
  • Almost 10% of our visitors had over 30 visited sites and 120 subpages detected—heavy Internet users who don’t protect themselves are more affected than others.

    […]

  • The ability to detect visitors’ browsing history requires just a few lines of code. Armed with a list of websites to check for, a malicious webmaster can scan over 25 thousand links per second (1.5 million links per minute) in almost every recent browser.
  • Most websites and pages you view in your browser can be detected as long as they are kept in your history. Almost every address that was in your browser’s address bar can be detected (this includes most pages, including those retrieved using https and some forms with potentialy private information such as your zipcode or search query). Pages won’t be detected when they expire from your history (usually after a month or two), or if you manually clear it.

For now, the only way to fix the issue is to constantly clear browsing history or use private browsing modes. The first browser to prevent this trick in a default installation (Firefox 4.0) is supposed to come out in October.

Here’s a link to the paper.

Posted on May 20, 2010 at 1:28 PMView Comments

Side-Channel Attacks on Encrypted Web Traffic

Nice paper: “Side-Channel Leaks in Web Applications: a Reality Today, a Challenge Tomorrow,” by Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang.

Abstract. With software-as-a-service becoming mainstream, more and more applications are delivered to the client through the Web. Unlike a desktop application, a web application is split into browser-side and server-side components. A subset of the application’s internal information flows are inevitably exposed on the network. We show that despite encryption, such a side-channel information leak is a realistic and serious threat to user privacy. Specifically, we found that surprisingly detailed sensitive information is being leaked out from a number of high-profile, top-of-the-line web applications in healthcare, taxation, investment and web search: an eavesdropper can infer the illnesses/medications/surgeries of the user, her family income and investment secrets, despite HTTPS protection; a stranger on the street can glean enterprise employees’ web search queries, despite WPA/WPA2 Wi-Fi encryption. More importantly, the root causes of the problem are some fundamental characteristics of web applications: stateful communication, low entropy input for better interaction, and significant traffic distinctions. As a result, the scope of the problem seems industry-wide. We further present a concrete analysis to demonstrate the challenges of mitigating such a threat, which points to the necessity of a disciplined engineering practice for side-channel mitigations in future web application developments.

We already know that eavesdropping on an SSL-encrypted web session can leak a lot of information about the person’s browsing habits. Since the size of both the page requests and the page downloads are different, an eavesdropper can sometimes infer which links the person clicked on and what pages he’s viewing.

This paper extends that work. Ed Felten explains:

The new paper shows that this inference-from-size problem gets much, much worse when pages are using the now-standard AJAX programming methods, in which a web “page” is really a computer program that makes frequent requests to the server for information. With more requests to the server, there are many more opportunities for an eavesdropper to make inferences about what you’re doing—to the point that common applications leak a great deal of private information.

Consider a search engine that autocompletes search queries: when you start to type a query, the search engine gives you a list of suggested queries that start with whatever characters you have typed so far. When you type the first letter of your search query, the search engine page will send that character to the server, and the server will send back a list of suggested completions. Unfortunately, the size of that suggested completion list will depend on which character you typed, so an eavesdropper can use the size of the encrypted response to deduce which letter you typed. When you type the second letter of your query, another request will go to the server, and another encrypted reply will come back, which will again have a distinctive size, allowing the eavesdropper (who already knows the first character you typed) to deduce the second character; and so on. In the end the eavesdropper will know exactly which search query you typed. This attack worked against the Google, Yahoo, and Microsoft Bing search engines.

Many web apps that handle sensitive information seem to be susceptible to similar attacks. The researchers studied a major online tax preparation site (which they don’t name) and found that it leaks a fairly accurate estimate of your Adjusted Gross Income (AGI). This happens because the exact set of questions you have to answer, and the exact data tables used in tax preparation, will vary based on your AGI. To give one example, there is a particular interaction relating to a possible student loan interest calculation, that only happens if your AGI is between $115,000 and $145,000—so that the presence or absence of the distinctively-sized message exchange relating to that calculation tells an eavesdropper whether your AGI is between $115,000 and $145,000. By assembling a set of clues like this, an eavesdropper can get a good fix on your AGI, plus information about your family status, and so on.

For similar reasons, a major online health site leaks information about which medications you are taking, and a major investment site leaks information about your investments.

The paper goes on to talk about mitigation—padding page requests and downloads to a constant size is the obvious one—but they’re difficult and potentially expensive.

More articles.

Posted on March 26, 2010 at 6:04 AMView Comments

Disabling Cars by Remote Control

Who didn’t see this coming?

More than 100 drivers in Austin, Texas found their cars disabled or the horns honking out of control, after an intruder ran amok in a web-based vehicle-immobilization system normally used to get the attention of consumers delinquent in their auto payments.

[…]

Ramos-Lopez’s account had been closed when he was terminated from Texas Auto Center in a workforce reduction last month, but he allegedly got in through another employee’s account, Garcia says. At first, the intruder targeted vehicles by searching on the names of specific customers. Then he discovered he could pull up a database of all 1,100 Auto Center customers whose cars were equipped with the device. He started going down the list in alphabetical order, vandalizing the records, disabling the cars and setting off the horns.

Posted on March 18, 2010 at 7:41 AMView Comments

Typosquatting

Measuring the Perpetrators and Funders of Typosquatting,” by Tyler Moore and Benjamin Edelman:

Abstract. We describe a method for identifying “typosquatting”, the intentional registration of misspellings of popular website addresses. We estimate that at least 938 000 typosquatting domains target the top 3 264 .com sites, and we crawl more than 285 000 of these domains to analyze their revenue sources. We find that 80% are supported by pay-per-click ads often advertising the correctly spelled domain and its competitors.Another 20% include static redirection to other sites. We present an automated technique that uncovered 75 otherwise legitimate websites which benefited from direct links from thousands of misspellings of competing websites. Using regression analysis, we find that websites in categories with higher pay-per-click ad prices face more typosquatting registrations, indicating that ad platforms such as Google AdWords exacerbate typosquatting. However, our investigations also confirm the feasibility of signicantly reducing typosquatting. We find that typosquatting is highly concentrated: Of typo domains showing Google ads, 63% use one of five advertising IDs, and some large name servers host typosquatting domains as much as four times as often as the web as a whole.

The paper appeared at the Financial Cryptography conference this year.

Posted on March 15, 2010 at 6:13 AMView Comments

Terrorists Prohibited from Using iTunes

The iTunes Store Terms and Conditions prohibits it:

Notice, as I read this clause not only are terrorists—or at least those on terrorist watch lists—prohibited from using iTunes to manufacture WMD, they are also prohibited from even downloading and using iTunes. So all the Al-Qaeda operatives holed up in the Northwest Frontier Provinces of Pakistan, dodging drone attacks while listening to Britney Spears songs downloaded with iTunes are in violation of the terms and conditions, even if they paid for the music!

And you thought being harassed at airports was bad enough.

Posted on February 10, 2010 at 12:39 PMView Comments

Tracking your Browser Without Cookies

How unique is your browser? Can you be tracked simply by its characteristics? The EFF is trying to find out. Their site Panopticlick will measure the characteristics of your browser setup and tell you how unique it is.

I just ran the test on myself, and my browser is unique amongst the 120,000 browsers tested so far. It’s my browser plugin details; no one else has the exact configuration I do. My list of system fonts is almost unique; only one other person has the exact configuration I do. (This seems odd to me, I have a week old Sony laptop running Windows 7, and I haven’t done anything with the fonts.)

EFF has some suggestions for self-defense, none of them very satisfactory. And here’s a news story.

EDITED TO ADD (1/29): There’s a lot in the comments leading me to question the accuracy of this test. I’ll post more when I know more.

EDITED TO ADD (2/12): Comments from one of the project developers.

Posted on January 29, 2010 at 7:06 AMView Comments

1 4 5 6 7 8 14

Sidebar photo of Bruce Schneier by Joe MacInnis.