Entries Tagged "steganography"

Page 4 of 6

Bioencryption

A group of students at the Chinese University in Hong Kong have figured out how to store data in bacteria. The article talks about how secure it is, and the students even coined the term “bioencryption,” but I don’t see any encryption. It’s just storage.

Another article:

They have also developed a three-tier security fence to encode the data, which may come as welcome news to U.S. diplomats, who have seen their thoughts splashed over the Internet thanks to WikiLeaks.

“Bacteria can’t be hacked,” points out Allen Yu, another student instructor.

“All kinds of computers are vulnerable to electrical failures or data theft. But bacteria are immune from cyber attacks. You can safeguard the information.”

The team have even coined a word for this field—biocryptography—and the encoding mechanism contains built-in checks to ensure that mutations in some bacterial cells do not corrupt the data as a whole.

Why can’t bacteria be hacked? If the storage system is attached to a network, it’s just as vulnerable as anything else attached to a network. And if it’s disconnected from any network, then it’s just as secure as anything else disconnected from a network. The problem the U.S. diplomats had was authorized access to the WikiLeaks cables by someone who decided to leak them. No cryptography helps against that.

There is cryptography in the project:

In addition we have created an encryption module with the R64 Shufflon-Specific Recombinase to further secure the information.

If the group is smart, this will be some conventional cryptography algorithm used to encrypt the data before it is stored on the bacteria.

In any case, this is fascinating and interesting work. I just don’t see any new form of encryption, or anything inherently unhackable.

Posted on January 25, 2011 at 1:40 PMView Comments

Friday Squid Blogging: Steganography in the Longfin Inshore Squid

Really:

While the notion that a few animals produce polarization signals and use them in communication is not new, Mäthger and Hanlon’s findings present the first anatomical evidence for a “hidden communication channel” that can remain masked by typical camouflage patterns. Their results suggest that it might be possible for squid to send concealed polarized signals to one another while staying camouflaged to fish or mammalian predators, most of which do not have polarization vision.

Mäthger notes that these messages could contain information regarding the whereabouts of other squid, for example. “Whether signals could also contain information regarding the presence of predators (i.e., a warning signal) is speculation, but it may be possible,” she adds.

Posted on October 22, 2010 at 4:31 PMView Comments

Social Steganography

From danah boyd:

Carmen is engaging in social steganography. She’s hiding information in plain sight, creating a message that can be read in one way by those who aren’t in the know and read differently by those who are. She’s communicating to different audiences simultaneously, relying on specific cultural awareness to provide the right interpretive lens. While she’s focused primarily on separating her mother from her friends, her message is also meaningless to broader audiences who have no idea that she had just broken up with her boyfriend.

Posted on August 25, 2010 at 6:20 AMView Comments

Natural Language Shellcode

Nice:

In this paper we revisit the assumption that shellcode need be fundamentally different in structure than non-executable data. Specifically, we elucidate how one can use natural language generation techniques to produce shellcode that is superficially similar to English prose. We argue that this new development poses significant challenges for inline payloadbased inspection (and emulation) as a defensive measure, and also highlights the need for designing more efficient techniques for preventing shellcode injection attacks altogether.

Posted on March 25, 2010 at 7:16 AMView Comments

Steganography Using TCP Retransmission

Research:

Hiding Information in Retransmissions

Wojciech Mazurczyk, Milosz Smolarczyk, Krzysztof Szczypiorski

The paper presents a new steganographic method called RSTEG (Retransmission Steganography), which is intended for a broad class of protocols that utilises retransmission mechanisms. The main innovation of RSTEG is to not acknowledge a successfully received packet in order to intentionally invoke retransmission. The retransmitted packet carries a steganogram instead of user data in the payload field. RSTEG is presented in the broad context of network steganography, and the utilisation of RSTEG for TCP (Transport Control Protocol) retransmission mechanisms is described in detail. Simulation results are also presented with the main aim to measure and compare the steganographic bandwidth of the proposed method for different TCP retransmission mechanisms as well as to determine the influence of RSTEG on the network retransmissions level.

I don’t think these sorts of things have any large-scale applications, but they are clever.

Posted on May 28, 2009 at 6:40 AMView Comments

Terrorists and Child Porn, Oh My!

It’s the ultimate movie-plot threat: terrorists using child porn:

It is thought Islamist extremists are concealing messages in digital images and audio, video or other files.

Police are now investigating the link between terrorists and paedophilia in an attempt to unravel the system.

It could lead to the training of child welfare experts to identify signs of terrorist involvement as they monitor pornographic websites.

Of course, terrorists and strangers preying on our children are two of the things that cause the most fear in people. Put them together, and there’s no limit to what sorts of laws you can get passed.

EDITED TO ADD (10/22): Best comment:

Why would terrorists hide incriminating messages inside incriminating photographs? That would be like drug smugglers hiding kilos of cocaine in bales of marijuana.

Posted on October 22, 2008 at 12:57 PMView Comments

Sidebar photo of Bruce Schneier by Joe MacInnis.