Entries Tagged "security engineering"

Page 8 of 15

The FAA Is Arguing for Security by Obscurity

In a proposed rule by the FAA, it argues that software in an Embraer S.A. Model ERJ 190-300 airplane is secure because it’s proprietary:

In addition, the operating systems for current airplane systems are usually and historically proprietary. Therefore, they are not as susceptible to corruption from worms, viruses, and other malicious actions as are more-widely used commercial operating systems, such as Microsoft Windows, because access to the design details of these proprietary operating systems is limited to the system developer and airplane integrator. Some systems installed on the Embraer Model ERJ 190-300 airplane will use operating systems that are widely used and commercially available from third-party software suppliers. The security vulnerabilities of these operating systems may be more widely known than are the vulnerabilities of proprietary operating systems that the avionics manufacturers currently use.

Longtime readers will immediately recognize the “security by obscurity” argument. Its main problem is that it’s fragile. The information is likely less obscure than you think, and even if it is truly obscure, once it’s published you’ve just lost all your security.

This is me from 2014, 2004, and 2002.

The comment period for this proposed rule is ongoing. If you comment, please be polite—they’re more likely to listen to you.

Posted on June 26, 2017 at 6:59 AMView Comments

Ransomware and the Internet of Things

As devastating as the latest widespread ransomware attacks have been, it’s a problem with a solution. If your copy of Windows is relatively current and you’ve kept it updated, your laptop is immune. It’s only older unpatched systems on your computer that are vulnerable.

Patching is how the computer industry maintains security in the face of rampant Internet insecurity. Microsoft, Apple and Google have teams of engineers who quickly write, test and distribute these patches, updates to the codes that fix vulnerabilities in software. Most people have set up their computers and phones to automatically apply these patches, and the whole thing works seamlessly. It isn’t a perfect system, but it’s the best we have.

But it is a system that’s going to fail in the “Internet of things”: everyday devices like smart speakers, household appliances, toys, lighting systems, even cars, that are connected to the web. Many of the embedded networked systems in these devices that will pervade our lives don’t have engineering teams on hand to write patches and may well last far longer than the companies that are supposed to keep the software safe from criminals. Some of them don’t even have the ability to be patched.

Fast forward five to 10 years, and the world is going to be filled with literally tens of billions of devices that hackers can attack. We’re going to see ransomware against our cars. Our digital video recorders and web cameras will be taken over by botnets. The data that these devices collect about us will be stolen and used to commit fraud. And we’re not going to be able to secure these devices.

Like every other instance of product safety, this problem will never be solved without considerable government involvement.

For years, I have been calling for more regulation to improve security in the face of this market failure. In the short term, the government can mandate that these devices have more secure default configurations and the ability to be patched. It can issue best-practice regulations for critical software and make software manufacturers liable for vulnerabilities. It’ll be expensive, but it will go a long way toward improved security.

But it won’t be enough to focus only on the devices, because these things are going to be around and on the Internet much longer than the two to three years we use our phones and computers before we upgrade them. I expect to keep my car for 15 years, and my refrigerator for at least 20 years. Cities will expect the networks they’re putting in place to last at least that long. I don’t want to replace my digital thermostat ever again. Nor, if I ever need one, do I want a surgeon to ever have to go back in to replace my computerized heart defibrillator in order to fix a software bug.

No amount of regulation can force companies to maintain old products, and it certainly can’t prevent companies from going out of business. The future will contain billions of orphaned devices connected to the web that simply have no engineers able to patch them.

Imagine this: The company that made your Internet-enabled door lock is long out of business. You have no way to secure yourself against the ransomware attack on that lock. Your only option, other than paying, and paying again when it’s reinfected, is to throw it away and buy a new one.

Ultimately, we will also need the network to block these attacks before they get to the devices, but there again the market will not fix the problem on its own. We need additional government intervention to mandate these sorts of solutions.

None of this is welcome news to a government that prides itself on minimal intervention and maximal market forces, but national security is often an exception to this rule. Last week’s cyberattacks have laid bare some fundamental vulnerabilities in our computer infrastructure and serve as a harbinger. There’s a lot of good research into robust solutions, but the economic incentives are all misaligned. As politically untenable as it is, we need government to step in to create the market forces that will get us out of this mess.

This essay previously appeared in the New York Times. Yes, I know I’m repeating myself.

EDITED TO ADD: A good cartoon.

Posted on May 25, 2017 at 6:15 AMView Comments

Securing Elections

Technology can do a lot more to make our elections more secure and reliable, and to ensure that participation in the democratic process is available to all. There are three parts to this process.

First, the voter registration process can be improved. The whole process can be streamlined. People should be able to register online, just as they can register for other government services. The voter rolls need to be protected from tampering, as that’s one of the major ways hackers can disrupt the election.

Second, the voting process can be significantly improved. Voting machines need to be made more secure. There are a lot of technical details best left to the voting-security experts who can deal with them, but such machines must include a paper ballot that provides a record verifiable by voters. The simplest and most reliable way to do that is already practiced in 37 states: optical-scan paper ballots, marked by the voters and counted by computer, but recountable by hand.

We need national security standards for voting machines, and funding for states to procure machines that comply with those standards.

This means no Internet voting. While that seems attractive, and certainly a way technology can improve voting, we don’t know how to do it securely. We simply can’t build an Internet voting system that is secure against hacking because of the requirement for a secret ballot. This makes voting different from banking and anything else we do on the Internet, and it makes security much harder. Even allegations of vote hacking would be enough to undermine confidence in the system, and we simply cannot afford that. We need a system of pre-election and post-election security audits of these voting machines to increase confidence in the system.

The third part of the voting process we need to secure is the tabulation system. After the polls close, we aggregate votes—­from individual machines, to polling places, to precincts, and finally to totals. This system is insecure as well, and we can do a lot more to make it reliable. Similarly, our system of recounts can be made more secure and efficient.

We have the technology to do all of this. The problem is political will. We have to decide that the goal of our election system is for the most people to be able to vote with the least amount of effort. If we continue to enact voter suppression measures like ID requirements, barriers to voter registration, limitations on early voting, reduced polling place hours, and faulty machines, then we are harming democracy more than we are by allowing our voting machines to be hacked.

We have already declared our election system to be critical national infrastructure. This is largely symbolic, but it demonstrates a commitment to secure elections and makes funding and other resources available to states. We can do much more. We owe it to democracy to do it.

This essay previously appeared on TheAtlantic.com.

Posted on May 10, 2017 at 2:14 PMView Comments

Stealing Browsing History Using Your Phone's Ambient Light Sensor

There has been a flurry of research into using the various sensors on your phone to steal data in surprising ways. Here’s another: using the phone’s ambient light sensor to detect what’s on the screen. It’s a proof of concept, but the paper’s general conclusions are correct:

There is a lesson here that designing specifications and systems from a privacy engineering perspective is a complex process: decisions about exposing sensitive APIs to the web without any protections should not be taken lightly. One danger is that specification authors and browser vendors will base decisions on overly general principles and research results which don’t apply to a particular new feature (similarly to how protections on gyroscope readings might not be sufficient for light sensor data).

Posted on April 28, 2017 at 6:17 AMView Comments

IoT Teddy Bear Leaked Personal Audio Recordings

CloudPets are an Internet-connected stuffed animals that allow children and parents to send each other voice messages. Last week, we learned that Spiral Toys had such poor security that it exposed 800,000 customer credentials, and two million audio recordings.

As we’ve seen time and time again in the last couple of years, so-called “smart” devices connected to the internet­—what is popularly known as the Internet of Things or IoT­—are often left insecure or are easily hackable, and often leak sensitive data. There will be a time when IoT developers and manufacturers learn the lesson and make secure by default devices, but that time hasn’t come yet. So if you are a parent who doesn’t want your loving messages with your kids leaked online, you might want to buy a good old fashioned teddy bear that doesn’t connect to a remote, insecure server.

That’s about right. This is me on that issue from 2014.

Posted on March 15, 2017 at 12:14 PMView Comments

Digital Security Exchange: Security for High-Risk Communities

I am part of this very interesting project:

For many users, blog posts on how to install Signal, massive guides to protecting your digital privacy, and broad statements like “use Tor”—all offered in good faith and with the best of intentions—can be hard to understand or act upon. If we want to truly secure civil society from digital attacks and empower communities in their to fight to protect their rights, we’ve got to recognize that digital security is largely a human problem, not a technical one. Taking cues from the experiences of the deeply knowledgeable global digital security training community, the Digital Security Exchange will seek to make it easier for trainers and experts to connect directly to the communities in the U.S.—sharing expertise, documentation, and best practices—in order to increase capacity and security across the board.

Posted on March 14, 2017 at 1:08 PMView Comments

Security and Privacy Guidelines for the Internet of Things

Lately, I have been collecting IoT security and privacy guidelines. Here’s everything I’ve found:

  1. Internet of Things (IoT) Broadband Internet Technical Advisory Group, Broadband Internet Technical Advisory Group, Nov 2016.
  2. IoT Security Guidance,” Open Web Application Security Project (OWASP), May 2016.
  3. Strategic Principles for Securing the Internet of Things (IoT),” US Department of Homeland Security, Nov 2016.
  4. Security,” OneM2M Technical Specification, Aug 2016.
  5. Security Solutions,” OneM2M Technical Specification, Aug 2016.
  6. IoT Security Guidelines Overview Document,” GSM Alliance, Feb 2016.
  7. IoT Security Guidelines For Service Ecosystems,” GSM Alliance, Feb 2016.
  8. IoT Security Guidelines for Endpoint Ecosystems,” GSM Alliance, Feb 2016.
  9. IoT Security Guidelines for Network Operators,” GSM Alliance, Feb 2016.
  10. Establishing Principles for Internet of Things Security,” IoT Security Foundation, undated.
  11. IoT Design Manifesto,” www.iotmanifesto.com, May 2015.
  12. NYC Guidelines for the Internet of Things,” City of New York, undated.
  13. IoT Security Compliance Framework,” IoT Security Foundation, 2016.
  14. Principles, Practices and a Prescription for Responsible IoT and Embedded Systems Development,” IoTIAP, Nov 2016.
  15. IoT Trust Framework,” Online Trust Alliance, Jan 2017.
  16. Five Star Automotive Cyber Safety Framework,” I am the Cavalry, Feb 2015.
  17. Hippocratic Oath for Connected Medical Devices,” I am the Cavalry, Jan 2016.
  18. Industrial Internet of Things Volume G4: Security Framework,” Industrial Internet Consortium, 2016.
  19. Future-proofing the Connected World: 13 Steps to Developing Secure IoT Products,” Cloud Security Alliance, 2016.

Other, related, items:

  1. We All Live in the Computer Now,” The Netgain Partnership, Oct 2016.
  2. Comments of EPIC to the FTC on the Privacy and Security Implications of the Internet of Things,” Electronic Privacy Information Center, Jun 2013.
  3. Internet of Things Software Update Workshop (IoTSU),” Internet Architecture Board, Jun 2016.
  4. Multistakeholder Process; Internet of Things (IoT) Security Upgradability and Patching,” National Telecommunications & Information Administration, Jan 2017.

They all largely say the same things: avoid known vulnerabilities, don’t have insecure defaults, make your systems patchable, and so on.

My guess is that everyone knows that IoT regulation is coming, and is either trying to impose self-regulation to forestall government action or establish principles to influence government action. It’ll be interesting to see how the next few years unfold.

If there are any IoT security or privacy guideline documents that I’m missing, please tell me in the comments.

EDITED TO ADD: Documents added to the list, above.

Posted on February 9, 2017 at 7:14 AMView Comments

1 6 7 8 9 10 15

Sidebar photo of Bruce Schneier by Joe MacInnis.