I should probably first speak about how adware works. Most adware targets Internet Explorer (IE) users because obviously they’re the biggest share of the market. In addition, they tend to be the less-savvy chunk of the market. If you’re using IE, then either you don’t care or you don’t know about all the vulnerabilities that IE has.
IE has a mechanism called a Browser Helper Object (BHO) which is basically a gob of executable code that gets informed of web requests as they’re going. It runs in the actual browser process, which means it can do anything the browser can do—which means basically anything. We would have a Browser Helper Object that actually served the ads, and then we made it so that you had to kill all the instances of the browser to be able to delete the thing. That’s a little bit of persistence right there.
If you also have an installer, a little executable, you can make a Registry entry and every time this thing reboots, the installer will check to make sure the BHO is there. If it is, great. If it isn’t, then it will install it. That’s fine until somebody goes and deletes the executable.
The next thing that Direct Revenue did—actually I should say what I did, because I was pretty heavily involved in this—was make a poller which continuously polls about every 10 seconds or so to see if the BHO was there and alive. If it was, great. If it wasn’t, [ the poller would ] install it. To make sure the poller was less likely to be detected, we developed this algorithm (a really trivial one) for making a random-looking filename that was consistent per machine but was not easy to guess. I think it was the first 6 or 8 characters of the DES-encoded MAC address. You take the MAC address, encode it with DES, take the first six characters and that was it. That was pretty good, except the file itself would be the same binary. If you md5-summed the file it would always be the same everywhere, and it was always in the same location.
Next we made a function shuffler, which would go into an executable, take the functions and randomly shuffle them. Once you do that, then of course the signature’s all messed up. [ We also shuffled ] a lot of the pointers within each actual function. It completely changed the shape of the executable.
We then made a bootstrapper, which was a tiny tiny piece of code written in Assembler which would decrypt the executable in memory, and then just run it. At the same time, we also made a virtual process executable. I’ve never heard of anybody else doing this before. Windows has this thing called Create Remote Thread. Basically, the semantics of Create Remote Thread are: You’re a process, I’m a different process. I call you and say “Hey! I have this bit of code. I’d really like it if you’d run this.” You’d say, “Sure,” because you’re a Windows process—you’re all hippie-like and free love. Windows processes, by the way, are insanely promiscuous. So! We would call a bunch of processes, hand them all a gob of code, and they would all run it. Each process would all know about two of the other ones. This allowed them to set up a ring…mutual support, right?
So we’ve progressed now from having just a Registry key entry, to having an executable, to having a randomly-named executable, to having an executable which is shuffled around a little bit on each machine, to one that’s encrypted—really more just obfuscated—to an executable that doesn’t even run as an executable. It runs merely as a series of threads. Now, those threads can communicate with one another, they would check to make sure that the BHO was there and up, and that the whatever other software we had was also up.
There was one further step that we were going to take but didn’t end up doing, and that is we were going to get rid of threads entirely, and just use interrupt handlers. It turns out that in Windows, you can get access to the interrupt handler pretty easily. In fact, you can register with the OS a chunk of code to handle a given interrupt. Then all you have to do is arrange for an interrupt to happen, and every time that interrupt happens, you wake up, do your stuff and go away. We never got to actually do that, but it was something we were thinking we’d do.