Entries Tagged "man-in-the-middle attacks"

Page 3 of 6

Using Samsung's Internet-Enabled Refrigerator for Man-in-the-Middle Attacks

This is interesting research:

Whilst the fridge implements SSL, it FAILS to validate SSL certificates, thereby enabling man-in-the-middle attacks against most connections. This includes those made to Google’s servers to download Gmail calendar information for the on-screen display.

So, MITM the victim’s fridge from next door, or on the road outside and you can potentially steal their Google credentials.

The notable exception to the rule above is when the terminal connects to the update server — we were able to isolate the URL https://www.samsungotn.net which is the same used by TVs, etc. We generated a set of certificates with the exact same contents as those on the real website (fake server cert + fake CA signing cert) in the hope that the validation was weak but it failed.

The terminal must have a copy of the CA and is making sure that the server’s cert is signed against that one. We can’t hack this without access to the file system where we could replace the CA it is validating against. Long story short we couldn’t intercept communications between the fridge terminal and the update server.

When I think about the security implications of the Internet of things, this is one of my primary worries. As we connect things to each other, vulnerabilities on one of them affect the security of another. And because so many of the things we connect to the Internet will be poorly designed, and low cost, there will be lots of vulnerabilities in them. Expect a lot more of this kind of thing as we move forward.

EDITED TO ADD (9/11): Dave Barry reblogged me.

Posted on August 31, 2015 at 1:56 PMView Comments

The Logjam (and Another) Vulnerability against Diffie-Hellman Key Exchange

Logjam is a new attack against the Diffie-Hellman key-exchange protocol used in TLS. Basically:

The Logjam attack allows a man-in-the-middle attacker to downgrade vulnerable TLS connections to 512-bit export-grade cryptography. This allows the attacker to read and modify any data passed over the connection. The attack is reminiscent of the FREAK attack, but is due to a flaw in the TLS protocol rather than an implementation vulnerability, and attacks a Diffie-Hellman key exchange rather than an RSA key exchange. The attack affects any server that supports DHE_EXPORT ciphers, and affects all modern web browsers. 8.4% of the Top 1 Million domains were initially vulnerable.

Here’s the academic paper.

One of the problems with patching the vulnerability is that it breaks things:

On the plus side, the vulnerability has largely been patched thanks to consultation with tech companies like Google, and updates are available now or coming soon for Chrome, Firefox and other browsers. The bad news is that the fix rendered many sites unreachable, including the main website at the University of Michigan, which is home to many of the researchers that found the security hole.

This is a common problem with version downgrade attacks; patching them makes you incompatible with anyone who hasn’t patched. And it’s the vulnerability the media is focusing on.

Much more interesting is the other vulnerability that the researchers found:

Millions of HTTPS, SSH, and VPN servers all use the same prime numbers for Diffie-Hellman key exchange. Practitioners believed this was safe as long as new key exchange messages were generated for every connection. However, the first step in the number field sieve — the most efficient algorithm for breaking a Diffie-Hellman connection — is dependent only on this prime. After this first step, an attacker can quickly break individual connections.

The researchers believe the NSA has been using this attack:

We carried out this computation against the most common 512-bit prime used for TLS and demonstrate that the Logjam attack can be used to downgrade connections to 80% of TLS servers supporting DHE_EXPORT. We further estimate that an academic team can break a 768-bit prime and that a nation-state can break a 1024-bit prime. Breaking the single, most common 1024-bit prime used by web servers would allow passive eavesdropping on connections to 18% of the Top 1 Million HTTPS domains. A second prime would allow passive decryption of connections to 66% of VPN servers and 26% of SSH servers. A close reading of published NSA leaks shows that the agency’s attacks on VPNs are consistent with having achieved such a break.

Remember James Bamford’s 2012 comment about the NSA’s cryptanalytic capabilities:

According to another top official also involved with the program, the NSA made an enormous breakthrough several years ago in its ability to cryptanalyze, or break, unfathomably complex encryption systems employed by not only governments around the world but also many average computer users in the US. The upshot, according to this official: “Everybody’s a target; everybody with communication is a target.”


The breakthrough was enormous, says the former official, and soon afterward the agency pulled the shade down tight on the project, even within the intelligence community and Congress. “Only the chairman and vice chairman and the two staff directors of each intelligence committee were told about it,” he says. The reason? “They were thinking that this computing breakthrough was going to give them the ability to crack current public encryption.”

And remember Director of National Intelligence James Clapper’s introduction to the 2013 “Black Budget“:

Also, we are investing in groundbreaking cryptanalytic capabilities to defeat adversarial cryptography and exploit internet traffic.

It’s a reasonable guess that this is what both Bamford’s source and Clapper are talking about. It’s an attack that requires a lot of precomputation — just the sort of thing a national intelligence agency would go for.

But that requirement also speaks to its limitations. The NSA isn’t going to put this capability at collection points like Room 641A at AT&T’s San Francisco office: the precomputation table is too big, and the sensitivity of the capability is too high. More likely, an analyst identifies a target through some other means, and then looks for data by that target in databases like XKEYSCORE. Then he sends whatever ciphertext he finds to the Cryptanalysis and Exploitation Services (CES) group, which decrypts it if it can using this and other techniques.

Ross Anderson wrote about this earlier this month, almost certainly quoting Snowden:

As for crypto capabilities, a lot of stuff is decrypted automatically on ingest (e.g. using a “stolen cert”, presumably a private key obtained through hacking). Else the analyst sends the ciphertext to CES and they either decrypt it or say they can’t.

The analysts are instructed not to think about how this all works. This quote also applied to NSA employees:

Strict guidelines were laid down at the GCHQ complex in Cheltenham, Gloucestershire, on how to discuss projects relating to decryption. Analysts were instructed: “Do not ask about or speculate on sources or methods underpinning Bullrun.”

I remember the same instructions in documents I saw about the NSA’s CES.

Again, the NSA has put surveillance ahead of security. It never bothered to tell us that many of the “secure” encryption systems we were using were not secure. And we don’t know what other national intelligence agencies independently discovered and used this attack.

The good news is now that we know reusing prime numbers is a bad idea, we can stop doing it.

EDITED TO ADD: The DH precomputation easily lends itself to custom ASIC design, and is something that pipelines easily. Using BitCoin mining hardware as a rough comparison, this means a couple orders of magnitude speedup.

EDITED TO ADD (5/23): Good analysis of the cryptography.

EDITED TO ADD (5/24): Good explanation by Matthew Green.

Posted on May 21, 2015 at 6:30 AMView Comments

Man-in-the-Middle Attacks on Lenovo Computers

It’s not just national intelligence agencies that break your https security through man-in-the-middle attacks. Corporations do it, too. For the past few months, Lenovo PCs have shipped with an adware app called Superfish that man-in-the-middles TLS connections.

Here’s how it works, and here’s how to get rid of it.

And you should get rid of it, not merely because it’s nasty adware. It’s a security risk. Someone with the password — here it is, cracked — can perform a man-in-the-middle attack on your security as well.

Since the story broke, Lenovo completely misunderstood the problem, turned off the app, and is now removing it from its computers.

Superfish, as well, exhibited extreme cluelessness by claiming its sofware poses no security risk. That was before someone cracked its password, though.

Three Slashdot threads.

EDITED TO ADD (2/20): US CERT has issued two security advisories. And the Department of Homeland Security is urging users to remove Superfish.

EDITED TO ADD (2/23): Another good article.

EDITED TO ADD (2/24): More commentary.

EDITED TO ADD (3/12): Rumors are that any software from Barak Weichselbaum may be vulnerable. This site tests for the vulnerability. Better removal instructions.

Posted on February 20, 2015 at 3:43 PMView Comments

Here's How Brazilian Crooks Steal Billions

Man-in-the-middle attack against a Brazilian payment system:

Brazil has an extremely active and talented cybercrime underground, and increasingly Brazilian organized crime gangs are setting their sights on boleto users who bank online. This is typically done through malware that lies in wait until the user of the hacked PC visits their bank’s site and fills out the account information for the recipient of a boleto transaction. In this scenario, the unwitting victim submits the transfer for payment and the malware modifies the request by substituting a recipient account that the attackers control.

This is the sort of attack that bypasses any two-factor authentication system, since it occurs after all authentication has happened. A defense would be to send a confirmation notice to another device the account-owner owns, confirming the details of the transaction.

Posted on July 9, 2014 at 7:30 AMView Comments


Heartbleed is a catastrophic bug in OpenSSL:

“The Heartbleed bug allows anyone on the Internet to read the memory of the systems protected by the vulnerable versions of the OpenSSL software. This compromises the secret keys used to identify the service providers and to encrypt the traffic, the names and passwords of the users and the actual content. This allows attackers to eavesdrop communications, steal data directly from the services and users and to impersonate services and users.

Basically, an attacker can grab 64K of memory from a server. The attack leaves no trace, and can be done multiple times to grab a different random 64K of memory. This means that anything in memory — SSL private keys, user keys, anything — is vulnerable. And you have to assume that it is all compromised. All of it.

“Catastrophic” is the right word. On the scale of 1 to 10, this is an 11.

Half a million sites are vulnerable, including my own. Test your vulnerability here.

The bug has been patched. After you patch your systems, you have to get a new public/private key pair, update your SSL certificate, and then change every password that could potentially be affected.

At this point, the probability is close to one that every target has had its private keys extracted by multiple intelligence agencies. The real question is whether or not someone deliberately inserted this bug into OpenSSL, and has had two years of unfettered access to everything. My guess is accident, but I have no proof.

This article is worth reading. Hacker News thread is filled with commentary. XKCD cartoon.

EDITED TO ADD (4/9): Has anyone looked at all the low-margin non-upgradable embedded systems that use OpenSSL? An upgrade path that involves the trash, a visit to Best Buy, and a credit card isn’t going to be fun for anyone.

EDITED TO ADD (4/10): I’m hearing that the CAs are completely clogged, trying to reissue so many new certificates. And I’m not sure we have anything close to the infrastructure necessary to revoke half a million certificates.

Possible evidence that Heartbleed was exploited last year.

EDITED TO ADD (4/10): I wonder if there is going to be some backlash from the mainstream press and the public. If nothing really bad happens — if this turns out to be something like the Y2K bug — then we are going to face criticisms of crying wolf.

EDITED TO ADD (4/11): Brian Krebs and Ed Felten on how to protect yourself from Heartbleed.

Posted on April 9, 2014 at 5:03 AMView Comments

How the NSA Attacks Tor/Firefox Users With QUANTUM and FOXACID

The online anonymity network Tor is a high-priority target for the National Security Agency. The work of attacking Tor is done by the NSA‘s application vulnerabilities branch, which is part of the systems intelligence directorate, or SID. The majority of NSA employees work in SID, which is tasked with collecting data from communications systems around the world.

According to a top-secret NSA presentation provided by the whistleblower Edward Snowden, one successful technique the NSA has developed involves exploiting the Tor browser bundle, a collection of programs designed to make it easy for people to install and use the software. The trick identifies Tor users on the Internet and then executes an attack against their Firefox web browser.

The NSA refers to these capabilities as CNE, or computer network exploitation.

The first step of this process is finding Tor users. To accomplish this, the NSA relies on its vast capability to monitor large parts of the Internet. This is done via the agency’s partnership with US telecoms firms under programs codenamed Stormbrew, Fairview, Oakstar and Blarney.

The NSA creates “fingerprints” that detect HTTP requests from the Tor network to particular servers. These fingerprints are loaded into NSA database systems like XKeyscore, a bespoke collection and analysis tool that NSA boasts allows its analysts to see “almost everything” a target does on the Internet.

Using powerful data analysis tools with codenames such as Turbulence, Turmoil and Tumult, the NSA automatically sifts through the enormous amount of Internet traffic that it sees, looking for Tor connections.

Last month, Brazilian TV news show Fantastico showed screenshots of an NSA tool that had the ability to identify Tor users by monitoring Internet traffic.

The very feature that makes Tor a powerful anonymity service, and the fact that all Tor users look alike on the Internet, makes it easy to differentiate Tor users from other web users. On the other hand, the anonymity provided by Tor makes it impossible for the NSA to know who the user is, or whether or not the user is in the US.

After identifying an individual Tor user on the Internet, the NSA uses its network of secret Internet servers to redirect those users to another set of secret Internet servers, with the codename FoxAcid, to infect the user’s computer. FoxAcid is an NSA system designed to act as a matchmaker between potential targets and attacks developed by the NSA, giving the agency opportunity to launch prepared attacks against their systems.

Once the computer is successfully attacked, it secretly calls back to a FoxAcid server, which then performs additional attacks on the target computer to ensure that it remains compromised long-term, and continues to provide eavesdropping information back to the NSA.

Exploiting the Tor browser bundle

Tor is a well-designed and robust anonymity tool, and successfully attacking it is difficult. The NSA attacks we found individually target Tor users by exploiting vulnerabilities in their Firefox browsers, and not the Tor application directly.

This, too, is difficult. Tor users often turn off vulnerable services like scripts and Flash when using Tor, making it difficult to target those services. Even so, the NSA uses a series of native Firefox vulnerabilities to attack users of the Tor browser bundle.

According to the training presentation provided by Snowden, EgotisticalGiraffe exploits a type confusion vulnerability in E4X, which is an XML extension for JavaScript. This vulnerability exists in Firefox 11.0 — 16.0.2, as well as Firefox 10.0 ESR — the Firefox version used until recently in the Tor browser bundle. According to another document, the vulnerability exploited by EgotisticalGiraffe was inadvertently fixed when Mozilla removed the E4X library with the vulnerability, and when Tor added that Firefox version into the Tor browser bundle, but NSA were confident that they would be able to find a replacement Firefox exploit that worked against version 17.0 ESR.

The Quantum system

To trick targets into visiting a FoxAcid server, the NSA relies on its secret partnerships with US telecoms companies. As part of the Turmoil system, the NSA places secret servers, codenamed Quantum, at key places on the Internet backbone. This placement ensures that they can react faster than other websites can. By exploiting that speed difference, these servers can impersonate a visited website to the target before the legitimate website can respond, thereby tricking the target’s browser to visit a Foxacid server.

In the academic literature, these are called “man-in-the-middle” attacks, and have been known to the commercial and academic security communities. More specifically, they are examples of “man-on-the-side” attacks.

They are hard for any organization other than the NSA to reliably execute, because they require the attacker to have a privileged position on the Internet backbone, and exploit a “race condition” between the NSA server and the legitimate website. This top-secret NSA diagram, made public last month, shows a Quantum server impersonating Google in this type of attack.

The NSA uses these fast Quantum servers to execute a packet injection attack, which surreptitiously redirects the target to the FoxAcid server. An article in the German magazine Spiegel, based on additional top secret Snowden documents, mentions an NSA developed attack technology with the name of QuantumInsert that performs redirection attacks. Another top-secret Tor presentation provided by Snowden mentions QuantumCookie to force cookies onto target browsers, and another Quantum program to “degrade/deny/disrupt Tor access”.

This same technique is used by the Chinese government to block its citizens from reading censored Internet content, and has been hypothesized as a probable NSA attack technique.

The FoxAcid system

According to various top-secret documents provided by Snowden, FoxAcid is the NSA codename for what the NSA calls an “exploit orchestrator,” an Internet-enabled system capable of attacking target computers in a variety of different ways. It is a Windows 2003 computer configured with custom software and a series of Perl scripts. These servers are run by the NSA’s tailored access operations, or TAO, group. TAO is another subgroup of the systems intelligence directorate.

The servers are on the public Internet. They have normal-looking domain names, and can be visited by any browser from anywhere; ownership of those domains cannot be traced back to the NSA.

However, if a browser tries to visit a FoxAcid server with a special URL, called a FoxAcid tag, the server attempts to infect that browser, and then the computer, in an effort to take control of it. The NSA can trick browsers into using that URL using a variety of methods, including the race-condition attack mentioned above and frame injection attacks.

FoxAcid tags are designed to look innocuous, so that anyone who sees them would not be suspicious. http://baseball2.2ndhalfplays.com/nested/attribs/bins/1/define/forms9952_z1zzz.html is an example of one such tag, given in another top-secret training presentation provided by Snowden.

There is no currently registered domain name by that name; it is just an example for internal NSA training purposes.

The training material states that merely trying to visit the homepage of a real FoxAcid server will not result in any attack, and that a specialized URL is required. This URL would be created by TAO for a specific NSA operation, and unique to that operation and target. This allows the FoxAcid server to know exactly who the target is when his computer contacts it.

According to Snowden, FoxAcid is a general CNE system, used for many types of attacks other than the Tor attacks described here. It is designed to be modular, with flexibility that allows TAO to swap and replace exploits if they are discovered, and only run certain exploits against certain types of targets.

The most valuable exploits are saved for the most important targets. Low-value exploits are run against technically sophisticated targets where the chance of detection is high. TAO maintains a library of exploits, each based on a different vulnerability in a system. Different exploits are authorized against different targets, depending on the value of the target, the target’s technical sophistication, the value of the exploit, and other considerations.

In the case of Tor users, FoxAcid might use EgotisticalGiraffe against their Firefox browsers.

According to a top-secret operational management procedures manual provided by Snowden, once a target is successfully exploited it is infected with one of several payloads. Two basic payloads mentioned in the manual are designed to collect configuration and location information from the target computer so an analyst can determine how to further infect the computer.

These decisions are made in part by the technical sophistication of the target and the security software installed on the target computer, called Personal Security Products or PSP, in the manual.

FoxAcid payloads are updated regularly by TAO. For example, the manual refers to version of one of them.

FoxAcid servers also have sophisticated capabilities to avoid detection and to ensure successful infection of its targets. The operations manual states that a FoxAcid payload with the codename DireScallop can circumvent commercial products that prevent malicious software from making changes to a system that survive a reboot process.

The NSA also uses phishing attacks to induce users to click on FoxAcid tags.

TAO additionally uses FoxAcid to exploit callbacks — which is the general term for a computer infected by some automatic means — calling back to the NSA for more instructions and possibly to upload data from the target computer.

According to a top-secret operational management procedures manual, FoxAcid servers configured to receive callbacks are codenamed FrugalShot. After a callback, the FoxAcid server may run more exploits to ensure that the target computer remains compromised long term, as well as install “implants” designed to exfiltrate data.

By 2008, the NSA was getting so much FoxAcid callback data that they needed to build a special system to manage it all.

This essay previously appeared in the Guardian. It is the technical article associated with this more general-interest article. I also wrote two commentaries on the material.

EDITED TO ADD: Here is the source material we published. The Washington Post published its own story independently, based on some of the same source material and some new source material.

Here’s the official US government response to the story.

The Guardian decided to change the capitalization of the NSA codenames. They should properly be in all caps: FOXACID, QUANTUMCOOKIE, EGOTISTICALGIRAFFE, TURMOIL, and so on.

This is the relevant quote from the Spiegel article:

According to the slides in the GCHQ presentation, the attack was directed at several Belgacom employees and involved the planting of a highly developed attack technology referred to as a “Quantum Insert” (“QI”). It appears to be a method with which the person being targeted, without their knowledge, is redirected to websites that then plant malware on their computers that can then manipulate them. Some of the employees whose computers were infiltrated had “good access” to important parts of Belgacom’s infrastructure, and this seemed to please the British spies, according to the slides.

That should be “QUANTUMINSERT.” This is getting frustrating. The NSA really should release a style guide for press organizations publishing their secrets.

And the URL in the essay (now redacted at the Guardian site) was registered within minutes of the story posting, and is being used to serve malware. Don’t click on it.

Posted on October 7, 2013 at 6:24 AMView Comments

New NSA Leak Shows MITM Attacks Against Major Internet Services

The Brazilian television show “Fantastico” exposed an NSA training presentation that discusses how the agency runs man-in-the-middle attacks on the Internet. The point of the story was that the NSA engages in economic espionage against Petrobras, the Brazilian giant oil company, but I’m more interested in the tactical details.

The video on the webpage is long, and includes what I assume is a dramatization of an NSA classroom, but a few screen shots are important. The pages from the training presentation describe how the NSA’s MITM attack works:

However, in some cases GCHQ and the NSA appear to have taken a more aggressive and controversial route — on at least one occasion bypassing the need to approach Google directly by performing a man-in-the-middle attack to impersonate Google security certificates. One document published by Fantastico, apparently taken from an NSA presentation that also contains some GCHQ slides, describes “how the attack was done” to apparently snoop on SSL traffic. The document illustrates with a diagram how one of the agencies appears to have hacked into a target’s Internet router and covertly redirected targeted Google traffic using a fake security certificate so it could intercept the information in unencrypted format.

Documents from GCHQ’s “network exploitation” unit show that it operates a program called “FLYING PIG” that was started up in response to an increasing use of SSL encryption by email providers like Yahoo, Google, and Hotmail. The FLYING PIG system appears to allow it to identify information related to use of the anonymity browser Tor (it has the option to query “Tor events“) and also allows spies to collect information about specific SSL encryption certificates.

It’s that first link — also here — that shows the MITM attack against Google and its users.

Another screenshot implies is that the 2011 DigiNotar hack was either the work of the NSA, or exploited by the NSA.

Here’s another story on this.

Posted on September 13, 2013 at 6:23 AMView Comments

Man-in-the-Middle Attacks Against Browser Encryption

Last week, a story broke about how Nokia mounts man-in-the-middle attacks against secure browser sessions.

The Finnish phone giant has since admitted that it decrypts secure data that passes through HTTPS connections — including social networking accounts, online banking, email and other secure sessions — in order to compress the data and speed up the loading of Web pages.

The basic problem is that https sessions are opaque as they travel through the network. That’s the point — it’s more secure — but it also means that the network can’t do anything about them. They can’t be compressed, cached, or otherwise optimized. They can’t be rendered remotely. They can’t be inspected for security vulnerabilities. All the network can do is transmit the data back and forth.

But in our cloud-centric world, it makes more and more sense to process web data in the cloud. Nokia isn’t alone here. Opera’s mobile browser performs all sorts of optimizations on web pages before they are sent over the air to your smart phone. Amazon does the same thing with browsing on the Kindle. MobileScope, a really good smart-phone security application, performs the same sort of man-in-the-middle attack against https sessions to detect and prevent data leakage. I think Umbrella does as well. Nokia’s mistake was that they did it without telling anyone. With appropriate consent, it’s perfectly reasonable for most people and organizations to give both performance and security companies that ability to decrypt and re-encrypt https sessions — at least most of the time.

This is an area where security concerns are butting up against other issues. Nokia’s answer, which is basically “trust us, we’re not looking at your data,” is going to increasingly be the norm.

Posted on January 17, 2013 at 9:50 AMView Comments

Man-in-the-Middle Bank Fraud Attack

This sort of attack will become more common as banks require two-factor authentication:

Tatanga checks the user account details including the number of accounts, supported currency, balance/limit details. It then chooses the account from which it could steal the highest amount.

Next, it initiates a transfer.

At this point Tatanga uses a Web Inject to trick the user into believing that the bank is performing a chipTAN test. The fake instructions request that the user generate a TAN for the purpose of this “test” and enter the TAN.

Note that the attack relies on tricking the user, which isn’t very hard.

Posted on September 14, 2012 at 11:23 AMView Comments

Sidebar photo of Bruce Schneier by Joe MacInnis.