Entries Tagged "Linux"

Page 1 of 4

New Linux Cryptomining Malware

It’s pretty nasty:

The malware was dubbed “Shikitega” for its extensive use of the popular Shikata Ga Nai polymorphic encoder, which allows the malware to “mutate” its code to avoid detection. Shikitega alters its code each time it runs through one of several decoding loops that AT&T said each deliver multiple attacks, beginning with an ELF file that’s just 370 bytes.

Shikitega also downloads Mettle, a Metasploit interpreter that gives the attacker the ability to control attached webcams and includes a sniffer, multiple reverse shells, process control, shell command execution and additional abilities to control the affected system.

[…]

The final stage also establishes persistence, which Shikitega does by downloading and executing five shell scripts that configure a pair of cron jobs for the current user and a pair for the root user using crontab, which it can also install if not available.

Shikitega also uses cloud hosting solutions to store parts of its payload, which it further uses to obfuscate itself by contacting via IP address instead of domain name. “Without [a] domain name, it’s difficult to provide a complete list of indicators for detections since they are volatile and they will be used for legitimate purposes in a short period of time,” AT&T said.

Bottom line: Shikitega is a nasty piece of code. AT&T recommends Linux endpoint and IoT device managers keep security patches installed, keep EDR software up to date and make regular backups of essential systems.

Another article.

Slashdot thread.

Posted on September 12, 2022 at 9:41 AMView Comments

Symbiote Backdoor in Linux

Interesting:

What makes Symbiote different from other Linux malware that we usually come across, is that it needs to infect other running processes to inflict damage on infected machines. Instead of being a standalone executable file that is run to infect a machine, it is a shared object (SO) library that is loaded into all running processes using LD_PRELOAD (T1574.006), and parasitically infects the machine. Once it has infected all the running processes, it provides the threat actor with rootkit functionality, the ability to harvest credentials, and remote access capability.

News article:

Researchers have unearthed a discovery that doesn’t occur all that often in the realm of malware: a mature, never-before-seen Linux backdoor that uses novel evasion techniques to conceal its presence on infected servers, in some cases even with a forensic investigation.

No public attribution yet.

So far, there’s no evidence of infections in the wild, only malware samples found online. It’s unlikely this malware is widely active at the moment, but with stealth this robust, how can we be sure?

Posted on June 22, 2022 at 6:07 AMView Comments

Twelve-Year-Old Linux Vulnerability Discovered and Patched

It’s a privilege escalation vulnerability:

Linux users on Tuesday got a major dose of bad news—a 12-year-old vulnerability in a system tool called Polkit gives attackers unfettered root privileges on machines running most major distributions of the open source operating system.

Previously called PolicyKit, Polkit manages system-wide privileges in Unix-like OSes. It provides a mechanism for nonprivileged processes to safely interact with privileged processes. It also allows users to execute commands with high privileges by using a component called pkexec, followed by the command.

It was discovered in October, and disclosed last week—after most Linux distributions issued patches. Of course, there’s lots of Linux out there that never gets patched, so expect this to be exploited in the wild for a long time.

Of course, this vulnerability doesn’t give attackers access to the system. They have to get that some other way. But if they get access, this vulnerability gives them root privileges.

Posted on January 31, 2022 at 6:18 AMView Comments

Linux-Targeted Malware Increased by 35%

Crowdstrike is reporting that malware targeting Linux has increased considerably in 2021:

Malware targeting Linux systems increased by 35% in 2021 compared to 2020.

XorDDoS, Mirai and Mozi malware families accounted for over 22% of Linux-targeted threats observed by CrowdStrike in 2021.

Ten times more Mozi malware samples were observed in 2021 compared to 2020.

Lots of details in the report.

News article:

The Crowdstrike findings aren’t surprising as they confirm an ongoing trend that emerged in previous years.

For example, an Intezer report analyzing 2020 stats found that Linux malware families increased by 40% in 2020 compared to the previous year.

In the first six months of 2020, a steep rise of 500% in Golang malware was recorded, showing that malware authors were looking for ways to make their code run on multiple platforms.

This programming, and by extension, targeting trend, has already been confirmed in early 2022 cases and is likely to continue unabated.

Slashdot thread.

EDITED TO ADD (2/13): Another article.

Posted on January 24, 2022 at 6:27 AMView Comments

Router Security

This report is six months old, and I don’t know anything about the organization that produced it, but it has some alarming data about router security.

Conclusion: Our analysis showed that Linux is the most used OS running on more than 90% of the devices. However, many routers are powered by very old versions of Linux. Most devices are still powered with a 2.6 Linux kernel, which is no longer maintained for many years. This leads to a high number of critical and high severity CVEs affecting these devices.

Since Linux is the most used OS, exploit mitigation techniques could be enabled very easily. Anyhow, they are used quite rarely by most vendors except the NX feature.

A published private key provides no security at all. Nonetheless, all but one vendor spread several private keys in almost all firmware images.

Mirai used hard-coded login credentials to infect thousands of embedded devices in the last years. However, hard-coded credentials can be found in many of the devices and some of them are well known or at least easy crackable.

However, we can tell for sure that the vendors prioritize security differently. AVM does better job than the other vendors regarding most aspects. ASUS and Netgear do a better job in some aspects than D-Link, Linksys, TP-Link and Zyxel.

Additionally, our evaluation showed that large scale automated security analysis of embedded devices is possible today utilizing just open source software. To sum it up, our analysis shows that there is no router without flaws and there is no vendor who does a perfect job regarding all security aspects. Much more effort is needed to make home routers as secure as current desktop of server systems.

One comment on the report:

One-third ship with Linux kernel version 2.6.36 was released in October 2010. You can walk into a store today and buy a brand new router powered by software that’s almost 10 years out of date! This outdated version of the Linux kernel has 233 known security vulnerabilities registered in the Common Vulnerability and Exposures (CVE) database. The average router contains 26 critically-rated security vulnerabilities, according to the study.

We know the reasons for this. Most routers are designed offshore, by third parties, and then private labeled and sold by the vendors you’ve heard of. Engineering teams come together, design and build the router, and then disperse. There’s often no one around to write patches, and most of the time router firmware isn’t even patchable. The way to update your home router is to throw it away and buy a new one.

And this paper demonstrates that even the new ones aren’t likely to be secure.

Posted on February 19, 2021 at 6:00 AMView Comments

Attack Against PC Thunderbolt Port

The attack requires physical access to the computer, but it’s pretty devastating:

On Thunderbolt-enabled Windows or Linux PCs manufactured before 2019, his technique can bypass the login screen of a sleeping or locked computer—and even its hard disk encryption—to gain full access to the computer’s data. And while his attack in many cases requires opening a target laptop’s case with a screwdriver, it leaves no trace of intrusion and can be pulled off in just a few minutes. That opens a new avenue to what the security industry calls an “evil maid attack,” the threat of any hacker who can get alone time with a computer in, say, a hotel room. Ruytenberg says there’s no easy software fix, only disabling the Thunderbolt port altogether.

“All the evil maid needs to do is unscrew the backplate, attach a device momentarily, reprogram the firmware, reattach the backplate, and the evil maid gets full access to the laptop,” says Ruytenberg, who plans to present his Thunderspy research at the Black Hat security conference this summer­or the virtual conference that may replace it. “All of this can be done in under five minutes.”

Lots of details in the article above, and in the attack website. (We know it’s a modern hack, because it comes with its own website and logo.)

Intel responds.

EDITED TO ADD (5/14): More.

Posted on May 12, 2020 at 6:09 AMView Comments

USB Cable Kill Switch for Laptops

BusKill is designed to wipe your laptop (Linux only) if it is snatched from you in a public place:

The idea is to connect the BusKill cable to your Linux laptop on one end, and to your belt, on the other end. When someone yanks your laptop from your lap or table, the USB cable disconnects from the laptop and triggers a udev script [1, 2, 3] that executes a series of preset operations.

These can be something as simple as activating your screensaver or shutting down your device (forcing the thief to bypass your laptop’s authentication mechanism before accessing any data), but the script can also be configured to wipe the device or delete certain folders (to prevent thieves from retrieving any sensitive data or accessing secure business backends).

Clever idea, but I—and my guess is most people—would be much more likely to stand up from the table, forgetting that the cable was attached, and yanking it out. My problem with pretty much all systems like this is the likelihood of false alarms.

Slashdot article.

EDITED TO ADD (1/14): There are Bluetooth devices that will automatically encrypt a laptop when the device isn’t in proximity. That’s a much better interface than a cable.

Posted on January 7, 2020 at 6:03 AMView Comments

Cryptkeeper Bug

The Linux encryption app Cryptkeeper has a rather stunning security bug: the single-character decryption key “p” decrypts everything:

The flawed version is in Debian 9 (Stretch), currently in testing, but not in Debian 8 (Jessie). The bug appears to be a result of a bad interaction with the encfs encrypted filesystem’s command line interface: Cryptkeeper invokes encfs and attempts to enter paranoia mode with a simulated ‘p’ keypress—instead, it sets passwords for folders to just that letter.

In 2013, I wrote an essay about how an organization might go about designing a perfect backdoor. This one seems much more like a bad mistake than deliberate action. It’s just too dumb, and too obvious. If anyone actually used Cryptkeeper, it would have been discovered long ago.

Posted on February 7, 2017 at 9:50 AMView Comments

Firefox Removing Battery Status API

Firefox is removing the battery status API, citing privacy concerns. Here’s the paper that described those concerns:

Abstract. We highlight privacy risks associated with the HTML5 Battery Status API. We put special focus on its implementation in the Firefox browser. Our study shows that websites can discover the capacity of users’ batteries by exploiting the high precision readouts provided by Firefox on Linux. The capacity of the battery, as well as its level, expose a fingerprintable surface that can be used to track web users in short time intervals. Our analysis shows that the risk is much higher for old or used batteries with reduced capacities, as the battery capacity may potentially serve as a tracking identifier. The fingerprintable surface of the API could be drastically reduced without any loss in the API’s functionality by reducing the precision of the readings. We propose minor modifications to Battery Status API and its implementation in the Firefox browser to address the privacy issues presented in the study. Our bug report for Firefox was accepted and a fix is deployed.

W3C is updating the spec. Here’s a battery tracker found in the wild.

Posted on November 7, 2016 at 12:59 PMView Comments

1 2 3 4

Sidebar photo of Bruce Schneier by Joe MacInnis.