Entries Tagged "keys"

Page 3 of 13

Google Employees Use a Physical Token as Their Second Authentication Factor

Krebs on Security is reporting that all 85,000 Google employees use two-factor authentication with a physical token.

A Google spokesperson said Security Keys now form the basis of all account access at Google.

“We have had no reported or confirmed account takeovers since implementing security keys at Google,” the spokesperson said. “Users might be asked to authenticate using their security key for many different apps/reasons. It all depends on the sensitivity of the app and the risk of the user at that point in time.”

Now Google is selling that security to its users:

On Wednesday, the company announced its new Titan security key, a device that protects your accounts by restricting two-factor authentication to the physical world. It’s available as a USB stick and in a Bluetooth variation, and like similar products by Yubico and Feitian, it utilizes the protocol approved by the FIDO alliance. That means it’ll be compatible with pretty much any service that enables users to turn on Universal 2nd Factor Authentication (U2F).

Posted on July 26, 2018 at 12:18 PMView Comments

Major Bluetooth Vulnerability

Bluetooth has a serious security vulnerability:

In some implementations, the elliptic curve parameters are not all validated by the cryptographic algorithm implementation, which may allow a remote attacker within wireless range to inject an invalid public key to determine the session key with high probability. Such an attacker can then passively intercept and decrypt all device messages, and/or forge and inject malicious messages.

Paper. Website. Three news articles.

This is serious. Update your software now, and try not to think about all of the Bluetooth applications that can’t be updated.

Posted on July 25, 2018 at 2:08 PMView Comments

E-Mailing Private HTTPS Keys

I don’t know what to make of this story:

The email was sent on Tuesday by the CEO of Trustico, a UK-based reseller of TLS certificates issued by the browser-trusted certificate authorities Comodo and, until recently, Symantec. It was sent to Jeremy Rowley, an executive vice president at DigiCert, a certificate authority that acquired Symantec’s certificate issuance business after Symantec was caught flouting binding industry rules, prompting Google to distrust Symantec certificates in its Chrome browser. In communications earlier this month, Trustico notified DigiCert that 50,000 Symantec-issued certificates Trustico had resold should be mass revoked because of security concerns.

When Rowley asked for proof the certificates were compromised, the Trustico CEO emailed the private keys of 23,000 certificates, according to an account posted to a Mozilla security policy forum. The report produced a collective gasp among many security practitioners who said it demonstrated a shockingly cavalier treatment of the digital certificates that form one of the most basic foundations of website security.

Generally speaking, private keys for TLS certificates should never be archived by resellers, and, even in the rare cases where such storage is permissible, they should be tightly safeguarded. A CEO being able to attach the keys for 23,000 certificates to an email raises troubling concerns that those types of best practices weren’t followed.

I am croggled by the multiple layers of insecurity here.

BoingBoing post.

Posted on March 13, 2018 at 6:31 AMView Comments

Amazon's Door Lock Is Amazon's Bid to Control Your Home

Interesting essay about Amazon’s smart lock:

When you add Amazon Key to your door, something more sneaky also happens: Amazon takes over.

You can leave your keys at home and unlock your door with the Amazon Key app — but it’s really built for Amazon deliveries. To share online access with family and friends, I had to give them a special code to SMS (yes, text) to unlock the door. (Amazon offers other smartlocks that have physical keypads).

The Key-compatible locks are made by Yale and Kwikset, yet don’t work with those brands’ own apps. They also can’t connect with a home-security system or smart-home gadgets that work with Apple and Google software.

And, of course, the lock can’t be accessed by businesses other than Amazon. No Walmart, no UPS, no local dog-walking company.

Keeping tight control over Key might help Amazon guarantee security or a better experience. “Our focus with smart home is on making things simpler for customers ­– things like providing easy control of connected devices with your voice using Alexa, simplifying tasks like reordering household goods and receiving packages,” the Amazon spokeswoman said.

But Amazon is barely hiding its goal: It wants to be the operating system for your home. Amazon says Key will eventually work with dog walkers, maids and other service workers who bill through its marketplace. An Amazon home security service and grocery delivery from Whole Foods can’t be far off.

This is happening all over. Everyone wants to control your life: Google, Apple, Amazon…everyone. It’s what I’ve been calling the feudal Internet. I fear it’s going to get a lot worse.

Posted on December 22, 2017 at 6:25 AMView Comments

Man-in-the-Middle Attack against Electronic Car-Door Openers

This is an interesting tactic, and there’s a video of it being used:

The theft took just one minute and the Mercedes car, stolen from the Elmdon area of Solihull on 24 September, has not been recovered.

In the footage, one of the men can be seen waving a box in front of the victim’s house.

The device receives a signal from the key inside and transmits it to the second box next to the car.

The car’s systems are then tricked into thinking the key is present and it unlocks, before the ignition can be started.

Posted on November 28, 2017 at 6:03 AMView Comments

Vulnerability in Amazon Key

Amazon Key is an IoT door lock that can enable one-time access codes for delivery people. To further secure that system, Amazon sells Cloud Cam, a camera that watches the door to ensure that delivery people don’t abuse their one-time access privilege.

Cloud Cam has been hacked:

But now security researchers have demonstrated that with a simple program run from any computer in Wi-Fi range, that camera can be not only disabled but frozen. A viewer watching its live or recorded stream sees only a closed door, even as their actual door is opened and someone slips inside. That attack would potentially enable rogue delivery people to stealthily steal from Amazon customers, or otherwise invade their inner sanctum.

And while the threat of a camera-hacking courier seems an unlikely way for your house to be burgled, the researchers argue it potentially strips away a key safeguard in Amazon’s security system.

Amazon is patching the system.

Posted on November 20, 2017 at 6:19 AMView Comments

New KRACK Attack Against Wi-Fi Encryption

Mathy Vanhoef has just published a devastating attack against WPA2, the 14-year-old encryption protocol used by pretty much all Wi-Fi systems. It’s an interesting attack, where the attacker forces the protocol to reuse a key. The authors call this attack KRACK, for Key Reinstallation Attacks.

This is yet another of a series of marketed attacks; with a cool name, a website, and a logo. The Q&A on the website answers a lot of questions about the attack and its implications. And lots of good information in this ArsTechnica article.

There is an academic paper, too:

“Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2,” by Mathy Vanhoef and Frank Piessens.

Abstract: We introduce the key reinstallation attack. This attack abuses design or implementation flaws in cryptographic protocols to reinstall an already-in-use key. This resets the key’s associated parameters such as transmit nonces and receive replay counters. Several types of cryptographic Wi-Fi handshakes are affected by the attack. All protected Wi-Fi networks use the 4-way handshake to generate a fresh session key. So far, this 14-year-old handshake has remained free from attacks, and is even proven secure. However, we show that the 4-way handshake is vulnerable to a key reinstallation attack. Here, the adversary tricks a victim into reinstalling an already-in-use key. This is achieved by manipulating and replaying handshake messages. When reinstalling the key, associated parameters such as the incremental transmit packet number (nonce) and receive packet number (replay counter) are reset to their initial value. Our key reinstallation attack also breaks the PeerKey, group key, and Fast BSS Transition (FT) handshake. The impact depends on the handshake being attacked, and the data-confidentiality protocol in use. Simplified, against AES-CCMP an adversary can replay and decrypt (but not forge) packets. This makes it possible to hijack TCP streams and inject malicious data into them. Against WPA-TKIP and GCMP the impact is catastrophic: packets can be replayed, decrypted, and forged. Because GCMP uses the same authentication key in both communication directions, it is especially affected.

Finally, we confirmed our findings in practice, and found that every Wi-Fi device is vulnerable to some variant of our attacks. Notably, our attack is exceptionally devastating against Android 6.0: it forces the client into using a predictable all-zero encryption key.

I’m just reading about this now, and will post more information as I learn it.

EDITED TO ADD: More news.

EDITED TO ADD: This meets my definition of brilliant. The attack is blindingly obvious once it’s pointed out, but for over a decade no one noticed it.

EDITED TO ADD: Matthew Green has a blog post on what went wrong. The vulnerability is in the interaction between two protocols. At a meta level, he blames the opaque IEEE standards process:

One of the problems with IEEE is that the standards are highly complex and get made via a closed-door process of private meetings. More importantly, even after the fact, they’re hard for ordinary security researchers to access. Go ahead and google for the IETF TLS or IPSec specifications — you’ll find detailed protocol documentation at the top of your Google results. Now go try to Google for the 802.11i standards. I wish you luck.

The IEEE has been making a few small steps to ease this problem, but they’re hyper-timid incrementalist bullshit. There’s an IEEE program called GET that allows researchers to access certain standards (including 802.11) for free, but only after they’ve been public for six months — coincidentally, about the same time it takes for vendors to bake them irrevocably into their hardware and software.

This whole process is dumb and — in this specific case — probably just cost industry tens of millions of dollars. It should stop.

Nicholas Weaver explains why most people shouldn’t worry about this:

So unless your Wi-Fi password looks something like a cat’s hairball (e.g. “:SNEIufeli7rc” — which is not guessable with a few million tries by a computer), a local attacker had the capability to determine the password, decrypt all the traffic, and join the network before KRACK.

KRACK is, however, relevant for enterprise Wi-Fi networks: networks where you needed to accept a cryptographic certificate to join initially and have to provide both a username and password. KRACK represents a new vulnerability for these networks. Depending on some esoteric details, the attacker can decrypt encrypted traffic and, in some cases, inject traffic onto the network.

But in none of these cases can the attacker join the network completely. And the most significant of these attacks affects Linux devices and Android phones, they don’t affect Macs, iPhones, or Windows systems. Even when feasible, these attacks require physical proximity: An attacker on the other side of the planet can’t exploit KRACK, only an attacker in the parking lot can.

EDITED TO ADD (11/13): The official link to the paper blocks anonymous users. Here’s an alternate.

Posted on October 16, 2017 at 8:39 AMView Comments

NSA Brute-Force Keysearch Machine

The Intercept published a story about a dedicated NSA brute-force keysearch machine being built with the help of New York University and IBM. It’s based on a document that was accidentally shared on the Internet by NYU.

The article is frustratingly short on details:

The WindsorGreen documents are mostly inscrutable to anyone without a Ph.D. in a related field, but they make clear that the computer is the successor to WindsorBlue, a next generation of specialized IBM hardware that would excel at cracking encryption, whose known customers are the U.S. government and its partners.

Experts who reviewed the IBM documents said WindsorGreen possesses substantially greater computing power than WindsorBlue, making it particularly adept at compromising encryption and passwords. In an overview of WindsorGreen, the computer is described as a “redesign” centered around an improved version of its processor, known as an “application specific integrated circuit,” or ASIC, a type of chip built to do one task, like mining bitcoin, extremely well, as opposed to being relatively good at accomplishing the wide range of tasks that, say, a typical MacBook would handle. One of the upgrades was to switch the processor to smaller transistors, allowing more circuitry to be crammed into the same area, a change quantified by measuring the reduction in nanometers (nm) between certain chip features.

Unfortunately, the Intercept decided not to publish most of the document, so all of those people with “a Ph.D. in a related field” can’t read and understand WindsorGreen’s capabilities. What sorts of key lengths can the machine brute force? Is it optimized for symmetric or asymmetric cryptanalysis? Random brute force or dictionary attacks? We have no idea.

Whatever the details, this is exactly the sort of thing the NSA should be spending their money on. Breaking the cryptography used by other nations is squarely in the NSA’s mission.

EDITED TO ADD (6/13): Some of the documents are online.

Posted on May 16, 2017 at 6:40 AMView Comments

Sidebar photo of Bruce Schneier by Joe MacInnis.