Entries Tagged "history of cryptography"

Page 1 of 12

Substitution Cipher Based on The Voynich Manuscript

Here’s a fun paper: “The Naibbe cipher: a substitution cipher that encrypts Latin and Italian as Voynich Manuscript-like ciphertext“:

Abstract: In this article, I investigate the hypothesis that the Voynich Manuscript (MS 408, Yale University Beinecke Library) is compatible with being a ciphertext by attempting to develop a historically plausible cipher that can replicate the manuscript’s unusual properties. The resulting cipher­a verbose homophonic substitution cipher I call the Naibbe cipher­can be done entirely by hand with 15th-century materials, and when it encrypts a wide range of Latin and Italian plaintexts, the resulting ciphertexts remain fully decipherable and also reliably reproduce many key statistical properties of the Voynich Manuscript at once. My results suggest that the so-called “ciphertext hypothesis” for the Voynich Manuscript remains viable, while also placing constraints on plausible substitution cipher structures.

Posted on December 8, 2025 at 7:04 AMView Comments

Book Review: The Business of Secrets

The Business of Secrets: Adventures in Selling Encryption Around the World by Fred Kinch (May 24, 2024)

From the vantage point of today, it’s surreal reading about the commercial cryptography business in the 1970s. Nobody knew anything. The manufacturers didn’t know whether the cryptography they sold was any good. The customers didn’t know whether the crypto they bought was any good. Everyone pretended to know, thought they knew, or knew better than to even try to know.

The Business of Secrets is the self-published memoirs of Fred Kinch. He was founder and vice president of—mostly sales—at a US cryptographic hardware company called Datotek, from company’s founding in 1969 until 1982. It’s mostly a disjointed collection of stories about the difficulties of selling to governments worldwide, along with descriptions of the highs and (mostly) lows of foreign airlines, foreign hotels, and foreign travel in general. But it’s also about encryption.

Datotek sold cryptographic equipment in the era after rotor machines and before modern academic cryptography. The company initially marketed computer-file encryption, but pivoted to link encryption—low-speed data, voice, fax—because that’s what the market wanted.

These were the years where the NSA hired anyone promising in the field, and routinely classified—and thereby blocked—publication of academic mathematics papers of those they didn’t hire. They controlled the fielding of strong cryptography by aggressively using the International Traffic in Arms regulation. Kinch talks about the difficulties in getting an expert license for Datotek’s products; he didn’t know that the only reason he ever got that license was because the NSA was able to break his company’s stuff. He had no idea that his largest competitor, the Swiss company Crypto AG, was owned and controlled by the CIA and its West German equivalent. “Wouldn’t that have made our life easier if we had known that back in the 1970s?” Yes, it would. But no one knew.

Glimmers of the clandestine world peek out of the book. Countries like France ask detailed tech questions, borrow or buy a couple of units for “evaluation,” and then disappear again. Did they break the encryption? Did they just want to see what their adversaries were using? No one at Datotek knew.

Kinch “carried the key generator logic diagrams and schematics” with him—even today, it’s good practice not to rely on their secrecy for security—but the details seem laughably insecure: four linear shift registers of 29, 23, 13, and 7 bits, variable stepping, and a small nonlinear final transformation. The NSA probably used this as a challenge to its new hires. But Datotek didn’t know that, at the time.

Kinch writes: “The strength of the cryptography had to be accepted on trust and only on trust.” Yes, but it’s so, so weird to read about it in practice. Kinch demonstrated the security of his telephone encryptors by hooking a pair of them up and having people listen to the encrypted voice. It’s rather like demonstrating the safety of a food additive by showing that someone doesn’t immediately fall over dead after eating it. (In one absolutely bizarre anecdote, an Argentine sergeant with a “hearing defect” could understand the scrambled analog voice. Datotek fixed its security, but only offered the upgrade to the Argentines, because no one else complained. As I said, no one knew anything.)

In his postscript, he writes that even if the NSA could break Datotek’s products, they were “vastly superior to what [his customers] had used previously.” Given that the previous devices were electromechanical rotor machines, and that his primary competition was a CIA-run operation, he’s probably right. But even today, we know nothing about any other country’s cryptanalytic capabilities during those decades.

A lot of this book has a “you had to be there” vibe. And it’s mostly tone-deaf. There is no real acknowledgment of the human-rights-abusing countries on Datotek’s customer list, and how their products might have assisted those governments. But it’s a fascinating artifact of an era before commercial cryptography went mainstream, before academic cryptography became approved for US classified data, before those of us outside the triple fences of the NSA understood the mathematics of cryptography.

This book review originally appeared in AFIO.

Posted on November 13, 2025 at 7:09 AMView Comments

1965 Cryptanalysis Training Workbook Released by the NSA

In the early 1960s, National Security Agency cryptanalyst and cryptanalysis instructor Lambros D. Callimahos coined the term “Stethoscope” to describe a diagnostic computer program used to unravel the internal structure of pre-computer ciphertexts. The term appears in the newly declassified September 1965 document Cryptanalytic Diagnosis with the Aid of a Computer, which compiled 147 listings from this tool for Callimahos’s course, CA-400: NSA Intensive Study Program in General Cryptanalysis.

The listings in the report are printouts from the Stethoscope program, run on the NSA’s Bogart computer, showing statistical and structural data extracted from encrypted messages, but the encrypted messages themselves are not included. They were used in NSA training programs to teach analysts how to interpret ciphertext behavior without seeing the original message.

The listings include elements such as frequency tables, index of coincidence, periodicity tests, bigram/trigram analysis, and columnar and transposition clues. The idea is to give the analyst some clues as to what language is being encoded, what type of cipher system is used, and potential ways to reconstruct plaintext within it.

Bogart was a special-purpose electronic computer tailored specifically for cryptanalytic tasks, such as statistical analysis of cipher texts, pattern recognition, and diagnostic testing, but not decryption per se.

Listings like these were revolutionary. Before computers, cryptanalysts did this type of work manually, painstakingly counting letters and testing hypotheses. Stethoscope automated the grunt work, allowing analysts to focus on interpretation, and cryptanalytical strategy.

These listings were part of the Intensive Study Program in General Cryptanalysis at NSA. Students were trained to interpret listings without seeing the original ciphertext, a method that sharpened their analytical intuitive skills.

Also mentioned in the report is Rob Roy, another NSA diagnostic tool focused on different cryptanalytic tasks, but also producing frequency counts, coincidence indices, and periodicity tests. NSA had a tradition of giving codebreaking tools colorful names—for example, DUENNA, SUPERSCRITCHER, MADAME X, HARVEST, and COPPERHEAD.

Posted on September 2, 2025 at 7:08 AMView Comments

Jim Sanborn Is Auctioning Off the Solution to Part Four of the Kryptos Sculpture

Well, this is interesting:

The auction, which will include other items related to cryptology, will be held Nov. 20. RR Auction, the company arranging the sale, estimates a winning bid between $300,000 and $500,000.

Along with the original handwritten plain text of K4 and other papers related to the coding, Mr. Sanborn will also be providing a 12-by-18-inch copper plate that has three lines of alphabetic characters cut through with a jigsaw, which he calls “my proof-of-concept piece” and which he kept on a table for inspiration during the two years he and helpers hand-cut the letters for the project. The process was grueling, exacting and nerve wracking. “You could not make any mistake with 1,800 letters,” he said. “It could not be repaired.”

Mr. Sanborn’s ideal winning bidder is someone who will hold on to that secret. He also hopes that person is willing to take over the system of verifying possible solutions and reviewing those unending emails, possibly through an automated system.

Here’s the auction listing.

Posted on August 21, 2025 at 7:02 AMView Comments

On the Voynich Manuscript

Really interesting article on the ancient-manuscript scholars who are applying their techniques to the Voynich Manuscript.

No one has been able to understand the writing yet, but there are some new understandings:

Davis presented her findings at the medieval-studies conference and published them in 2020 in the journal Manuscript Studies. She had hardly solved the Voynich, but she’d opened it to new kinds of investigation. If five scribes had come together to write it, the manuscript was probably the work of a community, rather than of a single deranged mind or con artist. Why the community used its own language, or code, remains a mystery. Whether it was a cloister of alchemists, or mad monks, or a group like the medieval Béguines—a secluded order of Christian women—required more study. But the marks of frequent use signaled that the manuscript served some routine, perhaps daily function.

Davis’s work brought like-minded scholars out of hiding. In just the past few years, a Yale linguist named Claire Bowern had begun performing sophisticated analyses of the text, building on the efforts of earlier scholars and on methods Bowern had used with undocumented Indigenous languages in Australia. At the University of Malta, computer scientists were figuring out how to analyze the Voynich with tools for natural-language processing. Researchers found that the manuscript’s roughly 38,000 words—and 9,000-word vocabulary—had many of the statistical hallmarks of actual language. The Voynich’s most common word, whatever it meant, appeared roughly twice as often as the second-most-common word and three times as often as the third-commonest, and so on—a touchstone of natural language known as Zipf’s law. The mix of word lengths and the ratio of unique words to total words were similarly language-like. Certain words, moreover, seemed to follow one another in predictable order, a possible sign of grammar.

Finally, each of the text’s sections—as defined by the drawings of plants, stars, bathing women, and so on—had different sets of overrepresented words, just as one would expect in a real book whose chapters focused on different subjects.

Spelling was the chief aberration. The Voynich alphabet—if that’s what it was—appeared to have a conventional 20-odd letters. But compared with known languages, too many of those letters repeated in the same order, both within words and across neighboring words, like a children’s rhyme. In some places, the spellings of adjacent words so converged that a single word repeated two or three times in a row. A rough English equivalent might be something akin to “She sells sea shells by the sea shore.” Another possibility, Bowern told me, was something like pig Latin, or the Yiddishism—known as “shm-reduplication”—that begets phrases such as fancy shmancy and rules shmules.

Posted on August 13, 2024 at 7:04 AMView Comments

1 2 3 12

Sidebar photo of Bruce Schneier by Joe MacInnis.