Entries Tagged "hardware"

Page 5 of 17

Hacking a Phone Through a Replacement Touchscreen

Researchers demonstrated a really clever hack: they hid malware in a replacement smart phone screen. The idea is that you would naively bring your smart phone in for repair, and the repair shop would install this malicious screen without your knowledge. The malware is hidden in touchscreen controller software, which is trusted by the phone.

The concern arises from research that shows how replacement screens—one put into a Huawei Nexus 6P and the other into an LG G Pad 7.0—can be used to surreptitiously log keyboard input and patterns, install malicious apps, and take pictures and e-mail them to the attacker. The booby-trapped screens also exploited operating system vulnerabilities that bypassed key security protections built into the phones. The malicious parts cost less than $10 and could easily be mass-produced. Most chilling of all, to most people, the booby-trapped parts could be indistinguishable from legitimate ones, a trait that could leave many service technicians unaware of the maliciousness. There would be no sign of tampering unless someone with a background in hardware disassembled the repaired phone and inspected it.

Academic paper. BoingBoing post.

Posted on August 28, 2017 at 6:22 AMView Comments

USB Kill Stick

It costs less than $60.

For just a few bucks, you can pick up a USB stick that destroys almost anything that it’s plugged into. Laptops, PCs, televisions, photo booths—you name it.

Once a proof-of-concept, the pocket-sized USB stick now fits in any security tester’s repertoire of tools and hacks, says the Hong Kong-based company that developed it. It works like this: when the USB Kill stick is plugged in, it rapidly charges its capacitors from the USB power supply, and then discharges—all in the matter of seconds.

On unprotected equipment, the device’s makers say it will “instantly and permanently disable unprotected hardware”.

You might be forgiven for thinking, “Well, why exactly?” The lesson here is simple enough. If a device has an exposed USB port—such as a copy machine or even an airline entertainment system—it can be used and abused, not just by a hacker or malicious actor, but also electrical attacks.

Slashdot thread.

Posted on September 12, 2016 at 2:07 PMView Comments

Practical TEMPEST Attack

Four researchers have demonstrated a TEMPEST attack against a laptop, recovering its keys by listening to its electrical emanations. The cost for the attack hardware was about $3,000.

News article:

To test the hack, the researchers first sent the target a specific ciphertext—­in other words, an encrypted message.

“During the decryption of the chosen ciphertext, we measure the EM leakage of the target laptop, focusing on a narrow frequency band,” the paper reads. The signal is then processed, and “a clean trace is produced which reveals information about the operands used in the elliptic curve cryptography,” it continues, which in turn “is used in order to reveal the secret key.”

The equipment used included an antenna, amplifiers, a software-defined radio, and a laptop. This process was being carried out through a 15cm thick wall, reinforced with metal studs, according to the paper.

The researchers obtained the secret key after observing 66 decryption processes, each lasting around 0.05 seconds. “This yields a total measurement time of about 3.3 sec,” the paper reads. It’s important to note that when the researchers say that the secret key was obtained in “seconds,” that’s the total measurement time, and not necessarily how long it would take for the attack to actually be carried out. A real world attacker would still need to factor in other things, such as the target reliably decrypting the sent ciphertext, because observing that process is naturally required for the attack to be successful.

For half a century this has been a nation-state-level espionage technique. The cost is continually falling.

Posted on February 23, 2016 at 5:49 AMView Comments

Hacking Fitbit

This is impressive:

“An attacker sends an infected packet to a fitness tracker nearby at bluetooth distance then the rest of the attack occurs by itself, without any special need for the attacker being near,” Apvrille says.

“[When] the victim wishes to synchronise his or her fitness data with FitBit servers to update their profile … the fitness tracker responds to the query, but in addition to the standard message, the response is tainted with the infected code.

“From there, it can deliver a specific malicious payload on the laptop, that is, start a backdoor, or have the machine crash [and] can propagate the infection to other trackers (Fitbits).”

That’s attacker to Fitbit to computer.

Posted on October 22, 2015 at 1:20 PMView Comments

1 3 4 5 6 7 17

Sidebar photo of Bruce Schneier by Joe MacInnis.