Entries Tagged "hardware"

Page 16 of 17

On-Card Displays

This is impressive: a display that works on a flexible credit card.

One of the major security problems with smart cards is that they don’t have their own I/O. That is, you have to trust whatever card reader/writer you stick the card in to faithfully send what you type into the card, and display whatever the card spits back out. Way back in 1999, Adam Shostack and I wrote a paper about this general class of security problem.

Think WYSIWTCS: What You See Is What The Card Says. That’s what an on-card display does.

No, it doesn’t protect against tampering with the card. That’s part of a completely different set of threats.

Posted on September 19, 2006 at 2:18 PMView Comments

Securing Wireless Networks with Stickers

Does anyone think this California almost-law (it’s awaiting the governor’s signature) will do any good at all?

From 1 October 2007, manufacturers must place warning labels on all equipment capable of receiving Wi-Fi signals, according to the new state law. These can take the form of box stickers, special notification in setup software, notification during the router setup, or through automatic securing of the connection. One warning sticker must be positioned so that it must be removed by a consumer before the product can be used.

Posted on September 5, 2006 at 1:56 PMView Comments

Printer Security

At BlackHat last week, Brendan O’Connor warned about the dangers of insecure printers:

“Stop treating them as printers. Treat them as servers, as workstations,” O’Connor said in his presentation on Thursday. Printers should be part of a company’s patch program and be carefully managed, not forgotten by IT and handled by the most junior person on staff, he said.

I remember the L0pht doing work on printer vulnerabilities, and ways to attack networks via the printers, years ago. But the point is still valid and bears repeating: printers are computers, and have vulnerabilities like any other computers.

Once a printer was under his control, O’Connor said he would be able to use it to map an organization’s internal network—a situation that could help stage further attacks. The breach gave him access to any of the information printed, copied or faxed from the device. He could also change the internal job counter—which can reduce, or increase, a company’s bill if the device is leased, he said.

The printer break-in also enables a number of practical jokes, such as sending print and scan jobs to arbitrary workers’ desktops, O’Connor said. Also, devices could be programmed to include, for example, an image of a paper clip on every print, fax or copy, ultimately driving office staffers to take the machine apart looking for the paper clip.

Getting copies of all printed documents is definitely a security vulnerability, but I think the biggest threat is that the printers are inside the network, and are a more-trusted launching pad for onward attacks.

One of the weaknesses in the Xerox system is an unsecured boot loader, the technology that loads the basic software on the device, O’Connor said. Other flaws lie in the device’s Web interface and in the availability of services such as the Simple Network Management Protocol and Telnet, he said.

O’Connor informed Xerox of the problems in January. The company did issue a fix for its WorkCentre 200 series, it said in a statement. “Thanks to Brendan’s efforts, we were able to post a patch for our customers in mid-January which fixes the issues,” a Xerox representative said in an e-mailed statement.

One of the reasons this is a particularly nasty problem is that people don’t update their printer software. Want to bet approximately 0% of the printer’s users installed that patch? And what about printers whose code can’t be patched?

EDITED TO ADD (8/7): O’Connor’s name corrected.

Posted on August 7, 2006 at 10:59 AMView Comments

Spy Gadgets You Can Buy

Cheap:

This is a collection of “spy equipment” we have found for sale around the internet. Everything here is completely real, is sold at online stores, and almost any item listed here costs less than $500, and often times can be bought for less than $200.

What’s interesting to me is less what is available commercially today, but what we can extrapolate is available to real spies.

Posted on July 13, 2006 at 1:50 PMView Comments

Counterfeiting an Entire Company

We’ve talked about counterfeit money, counterfeit concert tickets, counterfeit police credentials, and counterfeit police departments. Here’s a story about a counterfeit company:

Evidence seized in raids on 18 factories and warehouses in China and Taiwan over the past year showed that the counterfeiters had set up what amounted to a parallel NEC brand with links to a network of more than 50 electronics factories in China, Hong Kong and Taiwan.

In the name of NEC, the pirates copied NEC products, and went as far as developing their own range of consumer electronic products – everything from home entertainment centers to MP3 players. They also coordinated manufacturing and distribution, collecting all the proceeds.

Posted on May 1, 2006 at 8:02 AMView Comments

Brian Snow on Security

Good paper (.pdf) by Brian Snow of the NSA on security and assurance.

Abstract: When will we be secure? Nobody knows for sure—but it cannot happen before commercial security products and services possess not only enough functionality to satisfy customers’ stated needs, but also sufficient assurance of quality, reliability, safety, and appropriateness for use. Such assurances are lacking in most of today’s commercial security products and services. I discuss paths to better assurance in Operating Systems, Applications, and Hardware through better development environments, requirements definition, systems engineering, quality certification, and legal/regulatory constraints. I also give some examples.

Posted on December 13, 2005 at 2:15 PMView Comments

Trusted Computing Best Practices

The Trusted Computing Group (TCG) is an industry consortium that is trying to build more secure computers. They have a lot of members, although the board of directors consists of Microsoft, Sony, AMD, Intel, IBM, SUN, HP, and two smaller companies who are voted on in a rotating basis.

The basic idea is that you build a computer from the ground up securely, with a core hardware “root of trust” called a Trusted Platform Module (TPM). Applications can run securely on the computer, can communicate with other applications and their owners securely, and can be sure that no untrusted applications have access to their data or code.

This sounds great, but it’s a double-edged sword. The same system that prevents worms and viruses from running on your computer might also stop you from using any legitimate software that your hardware or operating system vendor simply doesn’t like. The same system that protects spyware from accessing your data files might also stop you from copying audio and video files. The same system that ensures that all the patches you download are legitimate might also prevent you from, well, doing pretty much anything.

(Ross Anderson has an excellent FAQ on the topic. I wrote about it back when Microsoft called it Palladium.)

In May, the Trusted Computing Group published a best practices document: “Design, Implementation, and Usage Principles for TPM-Based Platforms.” Written for users and implementers of TCG technology, the document tries to draw a line between good uses and bad uses of this technology.

The principles that TCG believes underlie the effective, useful, and acceptable design, implementation, and use of TCG technologies are the following:

  • Security: TCG-enabled components should achieve controlled access to designated critical secured data and should reliably measure and report the system’s security properties. The reporting mechanism should be fully under the owner’s control.
  • Privacy: TCG-enabled components should be designed and implemented with privacy in mind and adhere to the letter and spirit of all relevant guidelines, laws, and regulations. This includes, but is not limited to, the OECD Guidelines, the Fair Information Practices, and the European Union Data Protection Directive (95/46/EC).
  • Interoperability: Implementations and deployments of TCG specifications should facilitate interoperability. Furthermore, implementations and deployments of TCG specifications should not introduce any new interoperability obstacles that are not for the purpose of security.
  • Portability of data: Deployment should support established principles and practices of data ownership.
  • Controllability: Each owner should have effective choice and control over the use and operation of the TCG-enabled capabilities that belong to them; their participation must be opt-in. Subsequently, any user should be able to reliably disable the TCG functionality in a way that does not violate the owner’s policy.
  • Ease-of-use: The nontechnical user should find the TCG-enabled capabilities comprehensible and usable.

It’s basically a good document, although there are some valid criticisms. I like that the document clearly states that coercive use of the technology—forcing people to use digital rights management systems, for example, are inappropriate:

The use of coercion to effectively force the use of the TPM capabilities is not an appropriate use of the TCG technology.

I like that the document tries to protect user privacy:

All implementations of TCG-enabled components should ensure that the TCG technology is not inappropriately used for data aggregation of personal information/

I wish that interoperability were more strongly enforced. The language has too much wiggle room for companies to break interoperability under the guise of security:

Furthermore, implementations and deployments of TCG specifications should not introduce any new interoperability obstacles that are not for the purpose of security.

That sounds good, but what does “security” mean in that context? Security of the user against malicious code? Security of big media against people copying music and videos? Security of software vendors against competition? The big problem with TCG technology is that it can be used to further all three of these “security” goals, and this document is where “security” should be better defined.

Complaints aside, it’s a good document and we should all hope that companies follow it. Compliance is totally voluntary, but it’s the kind of document that governments and large corporations can point to and demand that vendors follow.

But there’s something fishy going on. Microsoft is doing its best to stall the document, and to ensure that it doesn’t apply to Vista (formerly known as Longhorn), Microsoft’s next-generation operating system.

The document was first written in the fall of 2003, and went through the standard review process in early 2004. Microsoft delayed the adoption and publication of the document, demanding more review. Eventually the document was published in June of this year (with a May date on the cover).

Meanwhile, the TCG built a purely software version of the specification: Trusted Network Connect (TNC). Basically, it’s a TCG system without a TPM.

The best practices document doesn’t apply to TNC, because Microsoft (as a member of the TCG board of directors) blocked it. The excuse is that the document hadn’t been written with software-only applications in mind, so it shouldn’t apply to software-only TCG systems.

This is absurd. The document outlines best practices for how the system is used. There’s nothing in it about how the system works internally. There’s nothing unique to hardware-based systems, nothing that would be different for software-only systems. You can go through the document yourself and replace all references to “TPM” or “hardware” with “software” (or, better yet, “hardware or software”) in five minutes. There are about a dozen changes, and none of them make any meaningful difference.

The only reason I can think of for all this Machiavellian maneuvering is that the TCG board of directors is making sure that the document doesn’t apply to Vista. If the document isn’t published until after Vista is released, then obviously it doesn’t apply.

Near as I can tell, no one is following this story. No one is asking why TCG best practices apply to hardware-based systems if they’re writing software-only specifications. No one is asking why the document doesn’t apply to all TCG systems, since it’s obviously written without any particular technology in mind. And no one is asking why the TCG is delaying the adoption of any software best practices.

I believe the reason is Microsoft and Vista, but clearly there’s some investigative reporting to be done.

(A version of this essay previously appeared on CNet’s News.com and ZDNet.)

EDITED TO ADD: This comment completely misses my point. Which is odd; I thought I was pretty clear.

EDITED TO ADD: There is a thread on Slashdot on the topic.

EDITED TO ADD: The Sydney Morning Herald republished this essay. Also “The Age.”

Posted on August 31, 2005 at 8:27 AMView Comments

Sidebar photo of Bruce Schneier by Joe MacInnis.