Entries Tagged "exploits"

Page 1 of 9

The Proliferation of Zero-days

The MIT Technology Review is reporting that 2021 is a blockbuster year for zero-day exploits:

One contributing factor in the higher rate of reported zero-days is the rapid global proliferation of hacking tools.

Powerful groups are all pouring heaps of cash into zero-days to use for themselves — and they’re reaping the rewards.

At the top of the food chain are the government-sponsored hackers. China alone is suspected to be responsible for nine zero-days this year, says Jared Semrau, a director of vulnerability and exploitation at the American cybersecurity firm FireEye Mandiant. The US and its allies clearly possess some of the most sophisticated hacking capabilities, and there is rising talk of using those tools more aggressively.


Few who want zero-days have the capabilities of Beijing and Washington. Most countries seeking powerful exploits don’t have the talent or infrastructure to develop them domestically, and so they purchase them instead.


It’s easier than ever to buy zero-days from the growing exploit industry. What was once prohibitively expensive and high-end is now more widely accessible.


And cybercriminals, too, have used zero-day attacks to make money in recent years, finding flaws in software that allow them to run valuable ransomware schemes.

“Financially motivated actors are more sophisticated than ever,” Semrau says. “One-third of the zero-days we’ve tracked recently can be traced directly back to financially motivated actors. So they’re playing a significant role in this increase which I don’t think many people are giving credit for.”


No one we spoke to believes that the total number of zero-day attacks more than doubled in such a short period of time — just the number that have been caught. That suggests defenders are becoming better at catching hackers in the act.

You can look at the data, such as Google’s zero-day spreadsheet, which tracks nearly a decade of significant hacks that were caught in the wild.

One change the trend may reflect is that there’s more money available for defense, not least from larger bug bounties and rewards put forward by tech companies for the discovery of new zero-day vulnerabilities. But there are also better tools.

Posted on September 24, 2021 at 9:51 AMView Comments

Details on the Unlocking of the San Bernardino Terrorist’s iPhone

The Washington Post has published a long story on the unlocking of the San Bernardino Terrorist’s iPhone 5C in 2016. We all thought it was an Israeli company called Cellebrite. It was actually an Australian company called Azimuth Security.

Azimuth specialized in finding significant vulnerabilities. Dowd, a former IBM X-Force researcher whom one peer called “the Mozart of exploit design,” had found one in open-source code from Mozilla that Apple used to permit accessories to be plugged into an iPhone’s lightning port, according to the person.


Using the flaw Dowd found, Wang, based in Portland, Ore., created an exploit that enabled initial access to the phone ­ a foot in the door. Then he hitched it to another exploit that permitted greater maneuverability, according to the people. And then he linked that to a final exploit that another Azimuth researcher had already created for iPhones, giving him full control over the phone’s core processor ­ the brains of the device. From there, he wrote software that rapidly tried all combinations of the passcode, bypassing other features, such as the one that erased data after 10 incorrect tries.

Apple is suing various companies over this sort of thing. The article goes into the details.

Posted on April 19, 2021 at 6:08 AMView Comments

Exploiting Spectre Over the Internet

Google has demonstrated exploiting the Spectre CPU attack remotely over the web:

Today, we’re sharing proof-of-concept (PoC) code that confirms the practicality of Spectre exploits against JavaScript engines. We use Google Chrome to demonstrate our attack, but these issues are not specific to Chrome, and we expect that other modern browsers are similarly vulnerable to this exploitation vector. We have developed an interactive demonstration of the attack available at https://leaky.page/ ; the code and a more detailed writeup are published on Github here.

The demonstration website can leak data at a speed of 1kB/s when running on Chrome 88 on an Intel Skylake CPU. Note that the code will likely require minor modifications to apply to other CPUs or browser versions; however, in our tests the attack was successful on several other processors, including the Apple M1 ARM CPU, without any major changes.

Posted on March 18, 2021 at 6:17 AMView Comments

Chinese Hackers Stole an NSA Windows Exploit in 2014

Check Point has evidence that (probably government affiliated) Chinese hackers stole and cloned an NSA Windows hacking tool years before (probably government affiliated) Russian hackers stole and then published the same tool. Here’s the timeline:

The timeline basically seems to be, according to Check Point:

  • 2013: NSA’s Equation Group developed a set of exploits including one called EpMe that elevates one’s privileges on a vulnerable Windows system to system-administrator level, granting full control. This allows someone with a foothold on a machine to commandeer the whole box.
  • 2014-2015: China’s hacking team code-named APT31, aka Zirconium, developed Jian by, one way or another, cloning EpMe.
  • Early 2017: The Equation Group’s tools were teased and then leaked online by a team calling itself the Shadow Brokers. Around that time, Microsoft cancelled its February Patch Tuesday, identified the vulnerability exploited by EpMe (CVE-2017-0005), and fixed it in a bumper March update. Interestingly enough, Lockheed Martin was credited as alerting Microsoft to the flaw, suggesting it was perhaps used against an American target.
  • Mid 2017: Microsoft quietly fixed the vulnerability exploited by the leaked EpMo exploit.

Lots of news articles about this.

Posted on March 4, 2021 at 6:25 AMView Comments

On Vulnerability-Adjacent Vulnerabilities

At the virtual Enigma Conference, Google’s Project Zero’s Maggie Stone gave a talk about zero-day exploits in the wild. In it, she talked about how often vendors fix vulnerabilities only to have the attackers tweak their exploits to work again. From a MIT Technology Review article:

Soon after they were spotted, the researchers saw one exploit being used in the wild. Microsoft issued a patch and fixed the flaw, sort of. In September 2019, another similar vulnerability was found being exploited by the same hacking group.

More discoveries in November 2019, January 2020, and April 2020 added up to at least five zero-day vulnerabilities being exploited from the same bug class in short order. Microsoft issued multiple security updates: some failed to actually fix the vulnerability being targeted, while others required only slight changes that required just a line or two to change in the hacker’s code to make the exploit work again.


“What we saw cuts across the industry: Incomplete patches are making it easier for attackers to exploit users with zero-days,” Stone said on Tuesday at the security conference Enigma. “We’re not requiring attackers to come up with all new bug classes, develop brand new exploitation, look at code that has never been researched before. We’re allowing the reuse of lots of different vulnerabilities that we previously knew about.”


Why aren’t they being fixed? Most of the security teams working at software companies have limited time and resources, she suggests — and if their priorities and incentives are flawed, they only check that they’ve fixed the very specific vulnerability in front of them instead of addressing the bigger problems at the root of many vulnerabilities.

Another article on the talk.

This is an important insight. It’s not enough to patch existing vulnerabilities. We need to make it harder for attackers to find new vulnerabilities to exploit. Closing entire families of vulnerabilities, rather than individual vulnerabilities one at a time, is a good way to do that.

Posted on February 15, 2021 at 6:14 AMView Comments

Sophisticated Watering Hole Attack

Google’s Project Zero has exposed a sophisticated watering-hole attack targeting both Windows and Android:

Some of the exploits were zero-days, meaning they targeted vulnerabilities that at the time were unknown to Google, Microsoft, and most outside researchers (both companies have since patched the security flaws). The hackers delivered the exploits through watering-hole attacks, which compromise sites frequented by the targets of interest and lace the sites with code that installs malware on visitors’ devices. The boobytrapped sites made use of two exploit servers, one for Windows users and the other for users of Android

The use of zero-days and complex infrastructure isn’t in itself a sign of sophistication, but it does show above-average skill by a professional team of hackers. Combined with the robustness of the attack code — ­which chained together multiple exploits in an efficient manner — the campaign demonstrates it was carried out by a “highly sophisticated actor.”


The modularity of the payloads, the interchangeable exploit chains, and the logging, targeting, and maturity of the operation also set the campaign apart, the researcher said.

No attribution was made, but the list of countries likely to be behind this isn’t very large. If you were to ask me to guess based on available information, I would guess it was the US — specifically, the NSA. It shows a care and precision that it’s known for. But I have no actual evidence for that guess.

All the vulnerabilities were fixed by last April.

Posted on January 20, 2021 at 6:00 AMView Comments

Impressive iPhone Exploit

This is a scarily impressive vulnerability:

Earlier this year, Apple patched one of the most breathtaking iPhone vulnerabilities ever: a memory corruption bug in the iOS kernel that gave attackers remote access to the entire device­ — over Wi-Fi, with no user interaction required at all. Oh, and exploits were wormable­ — meaning radio-proximity exploits could spread from one nearby device to another, once again, with no user interaction needed.


Beer’s attack worked by exploiting a buffer overflow bug in a driver for AWDL, an Apple-proprietary mesh networking protocol that makes things like Airdrop work. Because drivers reside in the kernel — ­one of the most privileged parts of any operating system­ — the AWDL flaw had the potential for serious hacks. And because AWDL parses Wi-Fi packets, exploits can be transmitted over the air, with no indication that anything is amiss.


Beer developed several different exploits. The most advanced one installs an implant that has full access to the user’s personal data, including emails, photos, messages, and passwords and crypto keys stored in the keychain. The attack uses a laptop, a Raspberry Pi, and some off-the-shelf Wi-Fi adapters. It takes about two minutes to install the prototype implant, but Beer said that with more work a better written exploit could deliver it in a “handful of seconds.” Exploits work only on devices that are within Wi-Fi range of the attacker.

There is no evidence that this vulnerability was ever used in the wild.

EDITED TO ADD: Slashdot thread.

Posted on December 2, 2020 at 1:55 PMView Comments

New Windows Zero-Day

Google’s Project Zero has discovered and published a buffer overflow vulnerability in the Windows Kernel Cryptography Driver. The exploit doesn’t affect the cryptography, but allows attackers to escalate system privileges:

Attackers were combining an exploit for it with a separate one targeting a recently fixed flaw in Chrome. The former allowed the latter to escape a security sandbox so the latter could execute code on vulnerable machines.

The vulnerability is being exploited in the wild, although Microsoft says it’s not being exploited widely. Everyone expects a fix in the next Patch Tuesday cycle.

Posted on November 2, 2020 at 2:01 PMView Comments

1 2 3 9

Sidebar photo of Bruce Schneier by Joe MacInnis.