Entries Tagged "encryption"

Page 53 of 53

Letter: Lexar JumpDrives

Recently I talked about a security vulnerability in Lexar’s JumpDrives. I received this e-mail from the company:

From: Diane Carlini

Subject: Lexar’s JumpDrive

@stake’s findings revealed a slight security exposure in scenarios where an experienced hacker could potentially monitor and gain access to the secure area. This was only the case in version 1.0 which included SafeGuard. Lexar’s JumpDrive Secure 2.0 device now includes software based on 256-bit AES Encryption Technology. With this new product, JumpDrive Secure 2.0 offers the highest level of data protection that is commonly available today.

Registered JumpDrive Secure customers will be contacted to inform them of this Security Advisory found in version 1.

I have no technical information, either from Lexar or @Stake, that verifies or refutes this claim.

Posted on November 5, 2004 at 9:53 AMView Comments

The Doghouse: Vadium Technology

Yet another one-time pad system. Not a lot of detail on the website, but this bit says it all:

“Based on patent-pending technology and 18 years of exhaustive research, Vadium’s AlphaCipher Encryption System ™, implements a true digital One-Time-Pad (“OTP”) cipher. The One-Time Pad is the only method of encrypting data where the strength of protection is immune to the mounting threats posed by breakthroughs in advanced mathematics and the ever-increasing processing power of computers. The consistently accelerated increases in computing power are proven to be a present and severe threat to all the other prevalent encryption methods.”

I am continually amazed at the never-ending stream of one-time pad systems. Every few months another company believes that they have finally figured out how to make a commercial one-time pad system. They announce it, are uniformly laughed at, and then disappear. It’s cryptography’s perpetual motion machine.

Vadium Technology’s website.

My essay on one-time pads.

Posted on November 4, 2004 at 12:08 PMView Comments

Doghouse: Merced County

Merced County is in California, and they explained why they chose Election Systems & Software (ES&S) as their electronic voting machines. There are a bunch of vague selection criteria, but this one is quite explicit: “Uses 1,064 bit encryption, not 128 which is less secure.”

I am simply too appalled to comment further.

Link

Posted on October 25, 2004 at 3:25 PMView Comments

The Legacy of DES

The Data Encryption Standard, or DES, was a mid-’70s brainchild of the National Bureau of Standards: the first modern, public, freely available encryption algorithm. For over two decades, DES was the workhorse of commercial cryptography.

Over the decades, DES has been used to protect everything from databases in mainframe computers, to the communications links between ATMs and banks, to data transmissions between police cars and police stations. Whoever you are, I can guarantee that many times in your life, the security of your data was protected by DES.

Just last month, the former National Bureau of Standards—the agency is now called the National Institute of Standards and Technology, or NIST—proposed withdrawing DES as an encryption standard, signifying the end of the federal government’s most important technology standard, one more important than ASCII, I would argue.

Today, cryptography is one of the most basic tools of computer security, but 30 years ago it barely existed as an academic discipline. In the days when the Internet was little more than a curiosity, cryptography wasn’t even a recognized branch of mathematics. Secret codes were always fascinating, but they were pencil-and-paper codes based on alphabets. In the secret government labs during World War II, cryptography entered the computer era and became mathematics. But with no professors teaching it, and no conferences discussing it, all the cryptographic research in the United States was conducted at the National Security Agency.

And then came DES.

Back in the early 1970s, it was a radical idea. The National Bureau of Standards decided that there should be a free encryption standard. Because the agency wanted it to be non-military, they solicited encryption algorithms from the public. They got only one serious response—the Data Encryption Standard—from the labs of IBM. In 1976, DES became the government’s standard encryption algorithm for “sensitive but unclassified” traffic. This included things like personal, financial and logistical information. And simply because there was nothing else, companies began using DES whenever they needed an encryption algorithm. Of course, not everyone believed DES was secure.

When IBM submitted DES as a standard, no one outside the National Security Agency had any expertise to analyze it. The NSA made two changes to DES: It tweaked the algorithm, and it cut the key size by more than half.

The strength of an algorithm is based on two things: how good the mathematics is, and how long the key is. A sure way of breaking an algorithm is to try every possible key. Modern algorithms have a key so long that this is impossible; even if you built a computer out of all the silicon atoms on the planet and ran it for millions of years, you couldn’t do it. So cryptographers look for shortcuts. If the mathematics are weak, maybe there’s a way to find the key faster: “breaking” the algorithm.

The NSA’s changes caused outcry among the few who paid attention, both regarding the “invisible hand” of the NSA—the tweaks were not made public, and no rationale was given for the final design—and the short key length.

But with the outcry came research. It’s not an exaggeration to say that the publication of DES created the modern academic discipline of cryptography. The first academic cryptographers began their careers by trying to break DES, or at least trying to understand the NSA’s tweak. And almost all of the encryption algorithms—public-key cryptography, in particular—can trace their roots back to DES. Papers analyzing different aspects of DES are still being published today.

By the mid-1990s, it became widely believed that the NSA was able to break DES by trying every possible key. This ability was demonstrated in 1998, when a $220,000 machine was built that could brute-force a DES key in a few days. In 1985, the academic community proposed a DES variant with the same mathematics but a longer key, called triple-DES. This variant had been used in more secure applications in place of DES for years, but it was time for a new standard. In 1997, NIST solicited an algorithm to replace DES.

The process illustrates the complete transformation of cryptography from a secretive NSA technology to a worldwide public technology. NIST once again solicited algorithms from the public, but this time the agency got 15 submissions from 10 countries. My own algorithm, Twofish, was one of them. And after two years of analysis and debate, NIST chose a Belgian algorithm, Rijndael, to become the Advanced Encryption Standard.

It’s a different world in cryptography now than it was 30 years ago. We know more about cryptography, and have more algorithms to choose among. AES won’t become a ubiquitous standard in the same way that DES did. But it is finding its way into banking security products, Internet security protocols, even computerized voting machines. A NIST standard is an imprimatur of quality and security, and vendors recognize that.

So, how good is the NSA at cryptography? They’re certainly better than the academic world. They have more mathematicians working on the problems, they’ve been working on them longer, and they have access to everything published in the academic world, while they don’t have to make their own results public. But are they a year ahead of the state of the art? Five years? A decade? No one knows.

It took the academic community two decades to figure out that the NSA “tweaks” actually improved the security of DES. This means that back in the ’70s, the National Security Agency was two decades ahead of the state of the art.

Today, the NSA is still smarter, but the rest of us are catching up quickly. In 1999, the academic community discovered a weakness in another NSA algorithm, SHA, that the NSA claimed to have discovered only four years previously. And just last week there was a published analysis of the NSA’s SHA-1 that demonstrated weaknesses that we believe the NSA didn’t know about at all.

Maybe now we’re just a couple of years behind.

This essay was originally published on CNet.com

Posted on October 6, 2004 at 6:05 PMView Comments

The Doghouse: Lexar JumpDrives

If you read Lexar’s documentation, their JumpDrive Secure product is secure. “If lost or stolen, you can rest assured that what you’ve saved there remains there with 256-bit AES encryption.” Sounds good, but security professionals are an untrusting sort. @Stake decided to check. They found that “the password can be observed in memory or read directly from the device, without evidence of tampering.” Even worse: the password “is stored in an XOR encrypted form and can be read directly from the device without any authentication.”

The moral of the story: don’t trust magic security words like “256-bit AES.” The devil is in the details, and it’s easy to screw up security.

Although screwing it up this badly is impressive.

Lexar’s product

@Stake’s analysis

Posted on October 1, 2004 at 9:45 PM

The Doghouse: Lexar JumpDrives

If you read Lexar’s documentation, their JumpDrive Secure product is secure. “If lost or stolen, you can rest assured that what you’ve saved there remains there with 256-bit AES encryption.” Sounds good, but security professionals are an untrusting sort. @Stake decided to check. They found that “the password can be observed in memory or read directly from the device, without evidence of tampering.” Even worse: the password “is stored in an XOR encrypted form and can be read directly from the device without any authentication.”

The moral of the story: don’t trust magic security words like “256-bit AES.” The devil is in the details, and it’s easy to screw up security.

Although screwing it up this badly is impressive.

Lexar’s product

@Stake’s analysis

Posted on October 1, 2004 at 9:45 PM

News

Last month I wrote: “Long and interesting review of Windows XP SP2, including a list of missed opportunities for increased security. Worth reading: The Register.” Be sure you read this follow-up as well:
The Register

The author of the Sasser worm has been arrested:
Computerworld
The Register
And been offered a job:
Australian IT

Interesting essay on the psychology of terrorist alerts:
Philip Zimbardo

Encrypted e-mail client for the Treo:
Treo Central

The Honeynet Project is publishing a bi-annual CD-ROM and newsletter. If you’re involved in honeynets, it’s definitely worth getting. And even if you’re not, it’s worth supporting this endeavor.
Honeynet

CIO Magazine has published a survey of corporate information security. I have some issues with the survey, but it’s worth reading.
IT Security

At the Illinois State Capitol, someone shot an unarmed security guard and fled. The security upgrade after the incident is—get ready—to change the building admittance policy from a “check IDs” procedure to a “sign in” procedure. First off, identity checking does not increase security. And secondly, why do they think that an attacker would be willing to forge/steal an identification card, but would be unwilling to sign their name on a clipboard?
The Guardian

Neat research: a quantum-encrypted TCP/IP network:
MetroWest Daily News
Slashdot
And NEC has its own quantum cryptography research results:
InfoWorld

Security story about the U.S. embassy in New Zealand. It’s a good lesson about the pitfalls of not thinking beyond the immediate problem.
The Dominion

The future of worms:
Computerworld

Teacher arrested after a bookmark is called a concealed weapon:
St. Petersburg Times
Remember all those other things you can bring on an aircraft that can knock people unconscious: handbags, laptop computers, hardcover books. And that dental floss can be used as a garrote. And, and, oh…you get the idea.

Seems you can open Kryptonite bicycle locks with the cap from a plastic pen. The attack works on what locksmiths call the “impressioning” principle. Tubular locks are especially vulnerable to this because all the pins are exposed, and tools that require little skill to use can be relatively unsophisticated. There have been commercial locksmithing products to do this to circular locks for a long time. Once you get the feel for how to do it, it’s pretty easy. I find Kryptonite’s proposed solution—swapping for a smaller diameter lock so a particular brand of pen won’t work—to be especially amusing.
Indystar.com
Wired
Bikeforums

I often talk about how most firewalls are ineffective because they’re not configured properly. Here’s some research on firewall configuration:
IEEE Computer

Reading RFID tags from three feet away:
Computerworld

AOL is offering two-factor authentication services. It’s not free: $10 plus $2 per month. It’s an RSA Security token, with a number that changes every 60 seconds.
PC World

Counter-terrorism has its own snake oil:
Quantum Sleeper

Posted on October 1, 2004 at 9:40 PMView Comments

News

Last month I wrote: “Long and interesting review of Windows XP SP2, including a list of missed opportunities for increased security. Worth reading: The Register.” Be sure you read this follow-up as well:
The Register

The author of the Sasser worm has been arrested:
Computerworld
The Register
And been offered a job:
Australian IT

Interesting essay on the psychology of terrorist alerts:
Philip Zimbardo

Encrypted e-mail client for the Treo:
Treo Central

The Honeynet Project is publishing a bi-annual CD-ROM and newsletter. If you’re involved in honeynets, it’s definitely worth getting. And even if you’re not, it’s worth supporting this endeavor.
Honeynet

CIO Magazine has published a survey of corporate information security. I have some issues with the survey, but it’s worth reading.
IT Security

At the Illinois State Capitol, someone shot an unarmed security guard and fled. The security upgrade after the incident is—get ready—to change the building admittance policy from a “check IDs” procedure to a “sign in” procedure. First off, identity checking does not increase security. And secondly, why do they think that an attacker would be willing to forge/steal an identification card, but would be unwilling to sign their name on a clipboard?
The Guardian

Neat research: a quantum-encrypted TCP/IP network:
MetroWest Daily News
Slashdot
And NEC has its own quantum cryptography research results:
InfoWorld

Security story about the U.S. embassy in New Zealand. It’s a good lesson about the pitfalls of not thinking beyond the immediate problem.
The Dominion

The future of worms:
Computerworld

Teacher arrested after a bookmark is called a concealed weapon:
St. Petersburg Times
Remember all those other things you can bring on an aircraft that can knock people unconscious: handbags, laptop computers, hardcover books. And that dental floss can be used as a garrote. And, and, oh…you get the idea.

Seems you can open Kryptonite bicycle locks with the cap from a plastic pen. The attack works on what locksmiths call the “impressioning” principle. Tubular locks are especially vulnerable to this because all the pins are exposed, and tools that require little skill to use can be relatively unsophisticated. There have been commercial locksmithing products to do this to circular locks for a long time. Once you get the feel for how to do it, it’s pretty easy. I find Kryptonite’s proposed solution—swapping for a smaller diameter lock so a particular brand of pen won’t work—to be especially amusing.
Indystar.com
Wired
Bikeforums

I often talk about how most firewalls are ineffective because they’re not configured properly. Here’s some research on firewall configuration:
IEEE Computer

Reading RFID tags from three feet away:
Computerworld

AOL is offering two-factor authentication services. It’s not free: $10 plus $2 per month. It’s an RSA Security token, with a number that changes every 60 seconds.
PC World

Counter-terrorism has its own snake oil:
Quantum Sleeper

Posted on October 1, 2004 at 9:40 PMView Comments

1 51 52 53

Sidebar photo of Bruce Schneier by Joe MacInnis.