Entries Tagged "encryption"

Page 3 of 49

Let's Encrypt Vulnerability

The BBC is reporting a vulnerability in the Let’s Encrypt certificate service:

In a notification email to its clients, the organisation said: “We recently discovered a bug in the Let’s Encrypt certificate authority code.

“Unfortunately, this means we need to revoke the certificates that were affected by this bug, which includes one or more of your certificates. To avoid disruption, you’ll need to renew and replace your affected certificate(s) by Wednesday, March 4, 2020. We sincerely apologise for the issue.”

I am seeing nothing on the Let’s Encrypt website. And no other details anywhere. I’ll post more when I know more.

EDITED TO ADD: More from Ars Technica:

Let’s Encrypt uses Certificate Authority software called Boulder. Typically, a Web server that services many separate domain names and uses Let’s Encrypt to secure them receives a single LE certificate that covers all domain names used by the server rather than a separate cert for each individual domain.

The bug LE discovered is that, rather than checking each domain name separately for valid CAA records authorizing that domain to be renewed by that server, Boulder would check a single one of the domains on that server n times (where n is the number of LE-serviced domains on that server). Let’s Encrypt typically considers domain validation results good for 30 days from the time of validation–but CAA records specifically must be checked no more than eight hours prior to certificate issuance.

The upshot is that a 30-day window is presented in which certificates might be issued to a particular Web server by Let’s Encrypt despite the presence of CAA records in DNS that would prohibit that issuance.

Since Let’s Encrypt finds itself in the unenviable position of possibly having issued certificates that it should not have, it is revoking all current certificates that might not have had proper CAA record checking on Wednesday, March 4. Users whose certificates are scheduled to be revoked will need to manually force-renewal before then.

And Let’s Encrypt has a blog post about it.

EDITED TO ADD: Slashdot thread.

Posted on March 4, 2020 at 6:46 AMView Comments

Wi-Fi Chip Vulnerability

There’s a vulnerability in Wi-Fi hardware that breaks the encryption:

The vulnerability exists in Wi-Fi chips made by Cypress Semiconductor and Broadcom, the latter a chipmaker Cypress acquired in 2016. The affected devices include iPhones, iPads, Macs, Amazon Echos and Kindles, Android devices, and Wi-Fi routers from Asus and Huawei, as well as the Raspberry Pi 3. Eset, the security company that discovered the vulnerability, said the flaw primarily affects Cypress’ and Broadcom’s FullMAC WLAN chips, which are used in billions of devices. Eset has named the vulnerability Kr00k, and it is tracked as CVE-2019-15126.

Manufacturers have made patches available for most or all of the affected devices, but it’s not clear how many devices have installed the patches. Of greatest concern are vulnerable wireless routers, which often go unpatched indefinitely.

That’s the real problem. Many of these devices won’t get patched — ever.

Posted on March 3, 2020 at 6:43 AMView Comments

A New Clue for the Kryptos Sculpture

Jim Sanborn, who designed the Kryptos sculpture in a CIA courtyard, has released another clue to the still-unsolved part 4. I think he’s getting tired of waiting.

Did we mention Mr. Sanborn is 74?

Holding on to one of the world’s most enticing secrets can be stressful. Some would-be codebreakers have appeared at his home.

Many felt they had solved the puzzle, and wanted to check with Mr. Sanborn. Sometimes forcefully. Sometimes, in person.

Elonka Dunin, a game developer and consultant who has created a rich page of background information on the sculpture and oversees the best known online community of thousands of Kryptos fans, said that some who contact her (sometimes also at home) are obsessive and appear to have tipped into mental illness. “I am always gentle to them and do my best to listen to them,” she said.

Mr. Sanborn has set up systems to allow people to check their proposed solutions without having to contact him directly. The most recent incarnation is an email-based process with a fee of $50 to submit a potential solution. He receives regular inquiries, so far none of them successful.

The ongoing process is exhausting, he said, adding “It’s not something I thought I would be doing 30 years on.”

Another news article.

EDITED TO ADD (2/13): Another article.

Posted on February 6, 2020 at 6:14 AMView Comments

Apple Abandoned Plans for Encrypted iCloud Backup after FBI Complained

This is new from Reuters:

More than two years ago, Apple told the FBI that it planned to offer users end-to-end encryption when storing their phone data on iCloud, according to one current and three former FBI officials and one current and one former Apple employee.

Under that plan, primarily designed to thwart hackers, Apple would no longer have a key to unlock the encrypted data, meaning it would not be able to turn material over to authorities in a readable form even under court order.

In private talks with Apple soon after, representatives of the FBI’s cyber crime agents and its operational technology division objected to the plan, arguing it would deny them the most effective means for gaining evidence against iPhone-using suspects, the government sources said.

When Apple spoke privately to the FBI about its work on phone security the following year, the end-to-end encryption plan had been dropped, according to the six sources. Reuters could not determine why exactly Apple dropped the plan.

EDITED TO ADD (2/13): Android has enrypted backups.

Posted on January 23, 2020 at 6:10 AMView Comments

Critical Windows Vulnerability Discovered by NSA

Yesterday’s Microsoft Windows patches included a fix for a critical vulnerability in the system’s crypto library.

A spoofing vulnerability exists in the way Windows CryptoAPI (Crypt32.dll) validates Elliptic Curve Cryptography (ECC) certificates.

An attacker could exploit the vulnerability by using a spoofed code-signing certificate to sign a malicious executable, making it appear the file was from a trusted, legitimate source. The user would have no way of knowing the file was malicious, because the digital signature would appear to be from a trusted provider.

A successful exploit could also allow the attacker to conduct man-in-the-middle attacks and decrypt confidential information on user connections to the affected software.

That’s really bad, and you should all patch your system right now, before you finish reading this blog post.

This is a zero-day vulnerability, meaning that it was not detected in the wild before the patch was released. It was discovered by security researchers. Interestingly, it was discovered by NSA security researchers, and the NSA security advisory gives a lot more information about it than the Microsoft advisory does.

Exploitation of the vulnerability allows attackers to defeat trusted network connections and deliver executable code while appearing as legitimately trusted entities. Examples where validation of trust may be impacted include:

  • HTTPS connections
  • Signed files and emails
  • Signed executable code launched as user-mode processes

The vulnerability places Windows endpoints at risk to a broad range of exploitation vectors. NSA assesses the vulnerability to be severe and that sophisticated cyber actors will understand the underlying flaw very quickly and, if exploited, would render the previously mentioned platforms as fundamentally vulnerable.The consequences of not patching the vulnerability are severe and widespread. Remote exploitation tools will likely be made quickly and widely available.Rapid adoption of the patch is the only known mitigation at this time and should be the primary focus for all network owners.

Early yesterday morning, NSA’s Cybersecurity Directorate head Anne Neuberger hosted a media call where she talked about the vulnerability and — to my shock — took questions from the attendees. According to her, the NSA discovered this vulnerability as part of its security research. (If it found it in some other nation’s cyberweapons stash — my personal favorite theory — she declined to say.) She did not answer when asked how long ago the NSA discovered the vulnerability. She said that this is not the first time the NSA sent Microsoft a vulnerability to fix, but it was the first time it has publicly taken credit for the discovery. The reason is that the NSA is trying to rebuild trust with the security community, and this disclosure is a result of its new initiative to share findings more quickly and more often.

Barring any other information, I would take the NSA at its word here. So, good for it.

And — seriously — patch your systems now: Windows 10 and Windows Server 2016/2019. Assume that this vulnerability has already been weaponized, probably by criminals and certainly by major governments. Even assume that the NSA is using this vulnerability — why wouldn’t it?

Ars Technica article. Wired article. CERT advisory.

EDITED TO ADD: Washington Post article.

EDITED TO ADD (1/16): The attack was demonstrated in less than 24 hours.

Brian Krebs blog post.

Posted on January 15, 2020 at 6:38 AMView Comments

New SHA-1 Attack

There’s a new, practical, collision attack against SHA-1:

In this paper, we report the first practical implementation of this attack, and its impact on real-world security with a PGP/GnuPG impersonation attack. We managed to significantly reduce the complexity of collisions attack against SHA-1: on an Nvidia GTX 970, identical-prefix collisions can now be computed with a complexity of 261.2rather than264.7, and chosen-prefix collisions with a complexity of263.4rather than267.1. When renting cheap GPUs, this translates to a cost of 11k US$ for a collision,and 45k US$ for a chosen-prefix collision, within the means of academic researchers.Our actual attack required two months of computations using 900 Nvidia GTX 1060GPUs (we paid 75k US$ because GPU prices were higher, and we wasted some time preparing the attack).

It has practical applications:

We chose the PGP/GnuPG Web of Trust as demonstration of our chosen-prefix collision attack against SHA-1. The Web of Trust is a trust model used for PGP that relies on users signing each other’s identity certificate, instead of using a central PKI. For compatibility reasons the legacy branch of GnuPG (version 1.4) still uses SHA-1 by default for identity certification.

Using our SHA-1 chosen-prefix collision, we have created two PGP keys with different UserIDs and colliding certificates: key B is a legitimate key for Bob (to be signed by the Web of Trust), but the signature can be transferred to key A which is a forged key with Alice’s ID. The signature will still be valid because of the collision, but Bob controls key A with the name of Alice, and signed by a third party. Therefore, he can impersonate Alice and sign any document in her name.

From a news article:

The new attack is significant. While SHA1 has been slowly phased out over the past five years, it remains far from being fully deprecated. It’s still the default hash function for certifying PGP keys in the legacy 1.4 version branch of GnuPG, the open-source successor to PGP application for encrypting email and files. Those SHA1-generated signatures were accepted by the modern GnuPG branch until recently, and were only rejected after the researchers behind the new collision privately reported their results.

Git, the world’s most widely used system for managing software development among multiple people, still relies on SHA1 to ensure data integrity. And many non-Web applications that rely on HTTPS encryption still accept SHA1 certificates. SHA1 is also still allowed for in-protocol signatures in the Transport Layer Security and Secure Shell protocols.

Posted on January 8, 2020 at 9:38 AMView Comments

Security Vulnerabilities in the RCS Texting Protocol

Interesting research:

SRLabs founder Karsten Nohl, a researcher with a track record of exposing security flaws in telephony systems, argues that RCS is in many ways no better than SS7, the decades-old phone system carriers still used for calling and texting, which has long been known to be vulnerable to interception and spoofing attacks. While using end-to-end encrypted internet-based tools like iMessage and WhatsApp obviates many of those of SS7 issues, Nohl says that flawed implementations of RCS make it not much safer than the SMS system it hopes to replace.

Posted on December 16, 2019 at 6:00 AMView Comments

Scaring People into Supporting Backdoors

Back in 1998, Tim May warned us of the “Four Horsemen of the Infocalypse”: “terrorists, pedophiles, drug dealers, and money launderers.” I tended to cast it slightly differently. This is me from 2005:

Beware the Four Horsemen of the Information Apocalypse: terrorists, drug dealers, kidnappers, and child pornographers. Seems like you can scare any public into allowing the government to do anything with those four.

Which particular horseman is in vogue depends on time and circumstance. Since the terrorist attacks of 9/11, the US government has been pushing the terrorist scare story. Recently, it seems to have switched to pedophiles and child exploitation. It began in September, with a long New York Times story on child sex abuse, which included this dig at encryption:

And when tech companies cooperate fully, encryption and anonymization can create digital hiding places for perpetrators. Facebook announced in March plans to encrypt Messenger, which last year was responsible for nearly 12 million of the 18.4 million worldwide reports of child sexual abuse material, according to people familiar with the reports. Reports to the authorities typically contain more than one image, and last year encompassed the record 45 million photos and videos, according to the National Center for Missing and Exploited Children.

(That’s wrong, by the way. Facebook Messenger already has an encrypted option. It’s just not turned on by default, like it is in WhatsApp.)

That was followed up by a conference by the US Department of Justice: “Lawless Spaces: Warrant Proof Encryption and its Impact on Child Exploitation Cases.” US Attorney General William Barr gave a speech on the subject. Then came an open letter to Facebook from Barr and others from the UK and Australia, using “protecting children” as the basis for their demand that the company not implement strong end-to-end encryption. (I signed on to another another open letter in response.) Then, the FBI tried to get Interpol to publish a statement denouncing end-to-end encryption.

This week, the Senate Judiciary Committee held a hearing on backdoors: “Encryption and Lawful Access: Evaluating Benefits and Risks to Public Safety and Privacy.” Video, and written testimonies, are available at the link. Eric Neuenschwander from Apple was there to support strong encryption, but the other witnesses were all against it. New York District Attorney Cyrus Vance was true to form:

In fact, we were never able to view the contents of his phone because of this gift to sex traffickers that came, not from God, but from Apple.

It was a disturbing hearing. The Senators asked technical questions to people who couldn’t answer them. The result was that an adjunct law professor was able to frame the issue of strong encryption as an externality caused by corporate liability dumping, and another example of Silicon Valley’s anti-regulation stance.

Let me be clear. None of us who favor strong encryption is saying that child exploitation isn’t a serious crime, or a worldwide problem. We’re not saying that about kidnapping, international drug cartels, money laundering, or terrorism. We are saying three things. One, that strong encryption is necessary for personal and national security. Two, that weakening encryption does more harm than good. And three, law enforcement has other avenues for criminal investigation than eavesdropping on communications and stored devices. This is one example, where people unraveled a dark-web website and arrested hundreds by analyzing Bitcoin transactions. This is another, where policy arrested members of a WhatsApp group.

So let’s have reasoned policy debates about encryption — debates that are informed by technology. And let’s stop it with the scare stories.

EDITED TO ADD (12/13): The DoD just said that strong encryption is essential for national security.

All DoD issued unclassified mobile devices are required to be password protected using strong passwords. The Department also requires that data-in-transit, on DoD issued mobile devices, be encrypted (e.g. VPN) to protect DoD information and resources. The importance of strong encryption and VPNs for our mobile workforce is imperative. Last October, the Department outlined its layered cybersecurity approach to protect DoD information and resources, including service men and women, when using mobile communications capabilities.

[…]

As the use of mobile devices continues to expand, it is imperative that innovative security techniques, such as advanced encryption algorithms, are constantly maintained and improved to protect DoD information and resources. The Department believes maintaining a domestic climate for state of the art security and encryption is critical to the protection of our national security.

Posted on December 12, 2019 at 6:11 AMView Comments

RSA-240 Factored

This just in:

We are pleased to announce the factorization of RSA-240, from RSA’s challenge list, and the computation of a discrete logarithm of the same size (795 bits):

RSA-240 = 12462036678171878406583504460810659043482037465167880575481878888328 966680118821085503603957027250874750986476843845862105486553797025393057189121 768431828636284694840530161441643046806687569941524699318570418303051254959437 1372159029236099 = 509435952285839914555051023580843714132648382024111473186660296521821206469746 700620316443478873837606252372049619334517 * 244624208838318150567813139024002896653802092578931401452041221336558477095178 155258218897735030590669041302045908071447

[…]

The previous records were RSA-768 (768 bits) in December 2009 [2], and a 768-bit prime discrete logarithm in June 2016 [3].

It is the first time that two records for integer factorization and discrete logarithm are broken together, moreover with the same hardware and software.

Both computations were performed with the Number Field Sieve algorithm, using the open-source CADO-NFS software [4].

The sum of the computation time for both records is roughly 4000 core-years, using Intel Xeon Gold 6130 CPUs as a reference (2.1GHz). A rough breakdown of the time spent in the main computation steps is as follows.

RSA-240 sieving: 800 physical core-years
RSA-240 matrix: 100 physical core-years
DLP-240 sieving: 2400 physical core-years
DLP-240 matrix: 700 physical core-years

The computation times above are well below the time that was spent with the previous 768-bit records. To measure how much of this can be attributed to Moore’s law, we ran our software on machines that are identical to those cited in the 768-bit DLP computation [3], and reach the conclusion that sieving for our new record size on these old machines would have taken 25% less time than the reported sieving time of the 768-bit DLP computation.

EDITED TO ADD (12/4): News article. Dan Goodin points out that the speed improvements were more due to improvements in the algorithms than from Moore’s Law.

Posted on December 3, 2019 at 2:12 PMView Comments

Sidebar photo of Bruce Schneier by Joe MacInnis.