Entries Tagged "disclosure"

Page 10 of 10

Sybase Practices Dumb Security

From Computerworld:

A threat by Sybase Inc. to sue a U.K.-based security research firm if it publicly discloses the details of eight holes it found in Sybase’s database software last year is evoking sharp criticism from some IT managers but sympathetic comments from others.

I can see why Sybase would prefer it if people didn’t know about vulnerabilities in their software—it’s bad for business—but disclosure is the reason companies are fixing them. If researchers are prohibited from publishing, then software developers are free to ignore security problems.

Posted on April 1, 2005 at 1:24 PMView Comments

Flaw in Winkhaus Blue Chip Lock

The Winkhaus Blue Chip Lock is a very popular, and expensive, 128-bit encrypted door lock. When you insert a key, there is a 128-bit challenge/response exchange between the key and the lock, and when the key is authorized it will pull a small pin down through some sort of solenoid switch. This allows you to turn the lock.

Unfortunately, it has a major security flaw. If you put a strong magnet near the lock, you can also pull this pin down, without authorization—without damage or any evidence.

The worst part is that Winkhaus is in denial about the problem, and is hoping it will just go away by itself. They’ve known about the flaw for at least six months, and have done nothing. They haven’t told any of their customers. If you ask them, they’ll say things like “it takes a very special magnet.”

From what I’ve heard, the only version that does not have this problem is the model without a built-in battery. In this model, the part with the solenoid switch is aimed on the inside instead of the outside. The internal battery is a weak spot, since you need to lift a small lid to exchange it. So this side can never face the “outside” of the door, since anyone could remove the batteries. With an external power supply you do not have this problem, since one side of the lock is pure metal.

A video demonstration is available here.

Posted on March 2, 2005 at 3:00 PMView Comments

ChoicePoint

The ChoicePoint fiasco has been news for over a week now, and there are only a few things I can add. For those who haven’t been following along, ChoicePoint mistakenly sold personal credit reports for about 145,000 Americans to criminals.

This story would have never been made public if it were not for SB 1386, a California law requiring companies to notify California residents if any of a specific set of personal information is leaked.

ChoicePoint’s behavior is a textbook example of how to be a bad corporate citizen. The information leakage occurred in October, and it didn’t tell any victims until February. First, ChoicePoint notified 30,000 Californians and said that it would not notify anyone who lived outside California (since the law didn’t require it). Finally, after public outcry, it announced that it would notify everyone affected.

The clear moral here is that first, SB 1386 needs to be a national law, since without it ChoicePoint would have covered up their mistakes forever. And second, the national law needs to force companies to disclose these sorts of privacy breaches immediately, and not allow them to hide for four months behind the “ongoing FBI investigation” shield.

More is required. Compare the difference in ChoicePoint’s public marketing slogans with its private reality.

From “Identity Theft Puts Pressure on Data Sellers,” by Evan Perez, in the 18 Feb 2005 Wall Street Journal:

The current investigation involving ChoicePoint began in October when the company found the 50 accounts it said were fraudulent. According to the company and police, criminals opened the accounts, posing as businesses seeking information on potential employees and customers. They paid fees of $100 to $200, and provided fake documentation, gaining access to a trove of
personal data including addresses, phone numbers, and social security numbers.

From ChoicePoint Chairman and CEO Derek V. Smith:

ChoicePoint’s core competency is verifying and authenticating individuals
and their credentials.

The reason there is a difference is purely economic. Identity theft is the fastest-growing crime in the U.S., and an enormous problem elsewhere in the world. It’s expensive—both in money and time—to the victims. And there’s not much people can do to stop it, as much of their personal identifying information is not under their control: it’s in the computers of companies like ChoicePoint.

ChoicePoint protects its data, but only to the extent that it values it. The hundreds of millions of people in ChoicePoint’s databases are not ChoicePoint’s customers. They have no power to switch credit agencies. They have no economic pressure that they can bring to bear on the problem. Maybe they should rename the company “NoChoicePoint.”

The upshot of this is that ChoicePoint doesn’t bear the costs of identity theft, so ChoicePoint doesn’t take those costs into account when figuring out how much money to spend on data security. In economic terms, it’s an “externality.”

The point of regulation is to make externalities internal. SB 1386 did that to some extent, since ChoicePoint now must figure the cost of public humiliation when they decide how much money to spend on security. But the actual cost of ChoicePoint’s security failure is much, much greater.

Until ChoicePoint feels those costs—whether through regulation or liability—it has no economic incentive to reduce them. Capitalism works, not through corporate charity, but through the free market. I see no other way of solving the problem.

Posted on February 23, 2005 at 3:19 PMView Comments

Safecracking

Matt Blaze has written an excellent paper: “Safecracking for the computer scientist.”

It has completely pissed off the locksmithing community.

There is a reasonable debate to be had about secrecy versus full disclosure, but a lot of these comments are just mean. Blaze is not being dishonest. His results are not trivial. I believe that the physical security community has a lot to learn from the computer security community, and that the computer security community has a lot to learn from the physical security community. Blaze’s work in physical security has important lessons for computer security—and, as it turns out, physical security—notwithstanding these people’s attempt to trivialize it in their efforts to attack him.

Posted on January 14, 2005 at 8:18 AMView Comments

Keeping Network Outages Secret

There’s considerable confusion between the concept of secrecy and the concept of security, and it is causing a lot of bad security and some surprising political arguments. Secrecy is not the same as security, and most of the time secrecy contributes to a false feeling of security instead of to real security.

In June, the U.S. Department of Homeland Security urged regulators to keep network outage information secret. The Federal Communications Commission already requires telephone companies to report large disruptions of telephone service, and wants to extend that requirement to high-speed data lines and wireless networks. But the DHS fears that such information would give cyberterrorists a “virtual road map” to target critical infrastructures.

This sounds like the “full disclosure” debate all over again. Is publishing computer and network vulnerability information a good idea, or does it just help the hackers? It arises again and again, as malware takes advantage of software vulnerabilities after they’ve been made public.

The argument that secrecy is good for security is naive, and always worth rebutting. Secrecy is only beneficial to security in limited circumstances, and certainly not with respect to vulnerability or reliability information. Secrets are fragile; once they’re lost they’re lost forever. Security that relies on secrecy is also fragile; once secrecy is lost there’s no way to recover security. Trying to base security on secrecy is just plain bad design.

Cryptography is based on secrets—keys—but look at all the work that goes into making them effective. Keys are short and easy to transfer. They’re easy to update and change. And the key is the only secret component of a cryptographic system. Cryptographic algorithms make terrible secrets, which is why one of cryptography’s most basic principles is to assume that the algorithm is public.

That’s the other fallacy with the secrecy argument: the assumption that secrecy works. Do we really think that the physical weak points of networks are such a mystery to the bad guys? Do we really think that the hacker underground never discovers vulnerabilities?

Proponents of secrecy ignore the security value of openness: public scrutiny is the only reliable way to improve security. Before software bugs were routinely published, software companies routinely denied their existence and wouldn’t bother fixing them, believing in the security of secrecy. And because customers didn’t know any better, they bought these systems, believing them to be secure. If we return to a practice of keeping software bugs secret, we’ll have vulnerabilities known to a few in the security community and to much of the hacker underground.

Secrecy prevents people from assessing their own risks.

Public reporting of network outages forces telephone companies to improve their service. It allows consumers to compare the reliability of different companies, and to choose one that best serves their needs. Without public disclosure, companies could hide their reliability performance from the public.

Just look at who supports secrecy. Software vendors such as Microsoft want very much to keep vulnerability information secret. The Department of Homeland Security’s recommendations were loudly echoed by the phone companies. It’s the interests of these companies that are served by secrecy, not the interests of consumers, citizens, or society.

In the post-9/11 world, we’re seeing this clash of secrecy versus openness everywhere. The U.S. government is trying to keep details of many anti-terrorism countermeasures—and even routine government operations—secret. Information about the infrastructure of plants and government buildings is secret. Profiling information used to flag certain airline passengers is secret. The standards for the Department of Homeland Security’s color-coded terrorism threat levels are secret. Even information about government operations without any terrorism connections is being kept secret.

This keeps terrorists in the dark, especially “dumb” terrorists who might not be able to figure out these vulnerabilities on their own. But at the same time, the citizenry—to whom the government is ultimately accountable—is not allowed to evaluate the countermeasures, or comment on their efficacy. Security can’t improve because there’s no public debate or public education.

Recent studies have shown that most water, power, gas, telephone, data, transportation, and distribution systems are scale-free networks. This means they always have highly connected hubs. Attackers know this intuitively and go after the hubs. Defenders are beginning to learn how to harden the hubs and provide redundancy among them. Trying to keep it a secret that a network has hubs is futile. Better to identify and protect them.

We’re all safer when we have the information we need to exert market pressure on vendors to improve security. We would all be less secure if software vendors didn’t make their security vulnerabilities public, and if telephone companies didn’t have to report network outages. And when government operates without accountability, that serves the security interests of the government, not of the people.

Security Focus article
CNN article

Another version of this essay appeared in the October Communications of the ACM.

Posted on October 1, 2004 at 9:36 PMView Comments

Keeping Network Outages Secret

There’s considerable confusion between the concept of secrecy and the concept of security, and it is causing a lot of bad security and some surprising political arguments. Secrecy is not the same as security, and most of the time secrecy contributes to a false feeling of security instead of to real security.

In June, the U.S. Department of Homeland Security urged regulators to keep network outage information secret. The Federal Communications Commission already requires telephone companies to report large disruptions of telephone service, and wants to extend that requirement to high-speed data lines and wireless networks. But the DHS fears that such information would give cyberterrorists a “virtual road map” to target critical infrastructures.

This sounds like the “full disclosure” debate all over again. Is publishing computer and network vulnerability information a good idea, or does it just help the hackers? It arises again and again, as malware takes advantage of software vulnerabilities after they’ve been made public.

The argument that secrecy is good for security is naive, and always worth rebutting. Secrecy is only beneficial to security in limited circumstances, and certainly not with respect to vulnerability or reliability information. Secrets are fragile; once they’re lost they’re lost forever. Security that relies on secrecy is also fragile; once secrecy is lost there’s no way to recover security. Trying to base security on secrecy is just plain bad design.

Cryptography is based on secrets—keys—but look at all the work that goes into making them effective. Keys are short and easy to transfer. They’re easy to update and change. And the key is the only secret component of a cryptographic system. Cryptographic algorithms make terrible secrets, which is why one of cryptography’s most basic principles is to assume that the algorithm is public.

That’s the other fallacy with the secrecy argument: the assumption that secrecy works. Do we really think that the physical weak points of networks are such a mystery to the bad guys? Do we really think that the hacker underground never discovers vulnerabilities?

Proponents of secrecy ignore the security value of openness: public scrutiny is the only reliable way to improve security. Before software bugs were routinely published, software companies routinely denied their existence and wouldn’t bother fixing them, believing in the security of secrecy. And because customers didn’t know any better, they bought these systems, believing them to be secure. If we return to a practice of keeping software bugs secret, we’ll have vulnerabilities known to a few in the security community and to much of the hacker underground.

Secrecy prevents people from assessing their own risks.

Public reporting of network outages forces telephone companies to improve their service. It allows consumers to compare the reliability of different companies, and to choose one that best serves their needs. Without public disclosure, companies could hide their reliability performance from the public.

Just look at who supports secrecy. Software vendors such as Microsoft want very much to keep vulnerability information secret. The Department of Homeland Security’s recommendations were loudly echoed by the phone companies. It’s the interests of these companies that are served by secrecy, not the interests of consumers, citizens, or society.

In the post-9/11 world, we’re seeing this clash of secrecy versus openness everywhere. The U.S. government is trying to keep details of many anti-terrorism countermeasures—and even routine government operations—secret. Information about the infrastructure of plants and government buildings is secret. Profiling information used to flag certain airline passengers is secret. The standards for the Department of Homeland Security’s color-coded terrorism threat levels are secret. Even information about government operations without any terrorism connections is being kept secret.

This keeps terrorists in the dark, especially “dumb” terrorists who might not be able to figure out these vulnerabilities on their own. But at the same time, the citizenry—to whom the government is ultimately accountable—is not allowed to evaluate the countermeasures, or comment on their efficacy. Security can’t improve because there’s no public debate or public education.

Recent studies have shown that most water, power, gas, telephone, data, transportation, and distribution systems are scale-free networks. This means they always have highly connected hubs. Attackers know this intuitively and go after the hubs. Defenders are beginning to learn how to harden the hubs and provide redundancy among them. Trying to keep it a secret that a network has hubs is futile. Better to identify and protect them.

We’re all safer when we have the information we need to exert market pressure on vendors to improve security. We would all be less secure if software vendors didn’t make their security vulnerabilities public, and if telephone companies didn’t have to report network outages. And when government operates without accountability, that serves the security interests of the government, not of the people.

Security Focus article
CNN article

Another version of this essay appeared in the October Communications of the ACM.

Posted on October 1, 2004 at 9:36 PMView Comments

1 8 9 10

Sidebar photo of Bruce Schneier by Joe MacInnis.