Entries Tagged "cyberwar"

Page 1 of 14

AI-Piloted Fighter Jets

News from Georgetown’s Center for Security and Emerging Technology:

China Claims Its AI Can Beat Human Pilots in Battle: Chinese state media reported that an AI system had successfully defeated human pilots during simulated dogfights. According to the Global Times report, the system had shot down several PLA pilots during a handful of virtual exercises in recent years. Observers outside China noted that while reports coming out of state-controlled media outlets should be taken with a grain of salt, the capabilities described in the report are not outside the realm of possibility. Last year, for example, an AI agent defeated a U.S. Air Force F-16 pilot five times out of five as part of DARPA’s AlphaDogfight Trial (which we covered at the time). While the Global Times report indicated plans to incorporate AI into future fighter planes, it is not clear how far away the system is from real-world testing. At the moment, the system appears to be used only for training human pilots. DARPA, for its part, is aiming to test dogfights with AI-piloted subscale jets later this year and with full-scale jets in 2023 and 2024.

Posted on June 25, 2021 at 8:53 AMView Comments

Vulnerabilities in Weapons Systems

“If you think any of these systems are going to work as expected in wartime, you’re fooling yourself.”

That was Bruce’s response at a conference hosted by US Transportation Command in 2017, after learning that their computerized logistical systems were mostly unclassified and on the Internet. That may be necessary to keep in touch with civilian companies like FedEx in peacetime or when fighting terrorists or insurgents. But in a new era facing off with China or Russia, it is dangerously complacent.

Any twenty-first century war will include cyber operations. Weapons and support systems will be successfully attacked. Rifles and pistols won’t work properly. Drones will be hijacked midair. Boats won’t sail, or will be misdirected. Hospitals won’t function. Equipment and supplies will arrive late or not at all.

Our military systems are vulnerable. We need to face that reality by halting the purchase of insecure weapons and support systems and by incorporating the realities of offensive cyberattacks into our military planning.

Over the past decade, militaries have established cyber commands and developed cyberwar doctrine. However, much of the current discussion is about offense. Increasing our offensive capabilities without being able to secure them is like having all the best guns in the world, and then storing them in an unlocked, unguarded armory. They just won’t be stolen; they’ll be subverted.

During that same period, we’ve seen increasingly brazen cyberattacks by everyone from criminals to governments. Everything is now a computer, and those computers are vulnerable. Cars, medical devices, power plants, and fuel pipelines have all been targets. Military computers, whether they’re embedded inside weapons systems or on desktops managing the logistics of those weapons systems, are similarly vulnerable. We could see effects as stodgy as making a tank impossible to start up, or sophisticated as retargeting a missile midair.

Military software is unlikely to be any more secure than commercial software. Although sensitive military systems rely on domestically manufactured chips as part of the Trusted Foundry program, many military systems contain the same foreign chips and code that commercial systems do: just like everyone around the world uses the same mobile phones, networking equipment, and computer operating systems. For example, there has been serious concern over Chinese-made 5G networking equipment that might be used by China to install “backdoors” that would allow the equipment to be controlled. This is just one of many risks to our normal civilian computer supply chains. And since military software is vulnerable to the same cyberattacks as commercial software, military supply chains have many of the same risks.

This is not speculative. A 2018 GAO report expressed concern regarding the lack of secure and patchable US weapons systems. The report observed that “in operational testing, the [Department of Defense] routinely found mission-critical cyber vulnerabilities in systems that were under development, yet program officials GAO met with believed their systems were secure and discounted some test results as unrealistic.” It’s a similar attitude to corporate executives who believe that they can’t be hacked — and equally naive.

An updated GAO report from earlier this year found some improvements, but the basic problem remained: “DOD is still learning how to contract for cybersecurity in weapon systems, and selected programs we reviewed have struggled to incorporate systems’ cybersecurity requirements into contracts.” While DOD now appears aware of the issue of lack of cybersecurity requirements, they’re still not sure yet how to fix it, and in three of the five cases GAO reviewed, DOD simply chose to not include the requirements at all.

Militaries around the world are now exploiting these vulnerabilities in weapons systems to carry out operations. When Israel in 2007 bombed a Syrian nuclear reactor, the raid was preceded by what is believed to have been a cyber attack on Syrian air defenses that resulted in radar screens showing no threat as bombers zoomed overhead. In 2018, a 29-country NATO exercise, Trident Juncture, that included cyberweapons was disrupted by Russian GPS jamming. NATO does try to test cyberweapons outside such exercises, but has limited scope in doing so. In May, Jens Stoltenberg, the NATO secretary-general, said that “NATO computer systems are facing almost daily cyberattacks.”

The war of the future will not only be about explosions, but will also be about disabling the systems that make armies run. It’s not (solely) that bases will get blown up; it’s that some bases will lose power, data, and communications. It’s not that self-driving trucks will suddenly go mad and begin rolling over friendly soldiers; it’s that they’ll casually roll off roads or into water where they sit, rusting, and in need of repair. It’s not that targeting systems on guns will be retargeted to 1600 Pennsylvania Avenue; it’s that many of them could simply turn off and not turn back on again.

So, how do we prepare for this next war? First, militaries need to introduce a little anarchy into their planning. Let’s have wargames where essential systems malfunction or are subverted­not all of the time, but randomly. To help combat siloed military thinking, include some civilians as well. Allow their ideas into the room when predicting potential enemy action. And militaries need to have well-developed backup plans, for when systems are subverted. In Joe Haldeman’s 1975 science-fiction novel The Forever War, he postulated a “stasis field” that forced his space marines to rely on nothing more than Roman military technologies, like javelins. We should be thinking in the same direction.

NATO isn’t yet allowing civilians not employed by NATO or associated military contractors access to their training cyber ranges where vulnerabilities could be discovered and remediated before battlefield deployment. Last year, one of us (Tarah) was listening to a NATO briefing after the end of the 2020 Cyber Coalition exercises, and asked how she and other information security researchers could volunteer to test cyber ranges used to train its cyber incident response force. She was told that including civilians would be a “welcome thought experiment in the tabletop exercises,” but including them in reality wasn’t considered. There is a rich opportunity for improvement here, providing transparency into where improvements could be made.

Second, it’s time to take cybersecurity seriously in military procurement, from weapons systems to logistics and communications contracts. In the three year span from the original 2018 GAO report to this year’s report, cybersecurity audit compliance went from 0% to 40% (those 2 of 5 programs mentioned earlier). We need to get much better. DOD requires that its contractors and suppliers follow the Cybersecurity Maturity Model Certification process; it should abide by the same standards. Making those standards both more rigorous and mandatory would be an obvious second step.

Gone are the days when we can pretend that our technologies will work in the face of a military cyberattack. Securing our systems will make everything we buy more expensive — maybe a lot more expensive. But the alternative is no longer viable.

The future of war is cyberwar. If your weapons and systems aren’t secure, don’t even bother bringing them onto the battlefield.

This essay was written with Tarah Wheeler, and previously appeared in Brookings TechStream.

Posted on June 8, 2021 at 5:32 AMView Comments

Including Hackers in NATO Wargames

This essay makes the point that actual computer hackers would be a useful addition to NATO wargames:

The international information security community is filled with smart people who are not in a military structure, many of whom would be excited to pose as independent actors in any upcoming wargames. Including them would increase the reality of the game and the skills of the soldiers building and training on these networks. Hackers and cyberwar experts would demonstrate how industrial control systems such as power supply for refrigeration and temperature monitoring in vaccine production facilities are critical infrastructure; they’re easy targets and should be among NATO’s priorities at the moment.

Diversity of thought leads to better solutions. We in the information security community strongly support the involvement of acknowledged nonmilitary experts in the development and testing of future cyberwar scenarios. We are confident that independent experts, many of whom see sharing their skills as public service, would view participation in these cybergames as a challenge and an honor.

Posted on January 29, 2021 at 12:03 PMView Comments

Ranking National Cyber Power

Harvard Kennedy School’s Belfer Center published the “National Cyber Power Index 2020: Methodology and Analytical Considerations.” The rankings: 1. US, 2. China, 3. UK, 4. Russia, 5. Netherlands, 6. France, 7. Germany, 8. Canada, 9. Japan, 10. Australia, 11. Israel. More countries are in the document.

We could — and should — argue about the criteria and the methodology, but it’s good that someone is starting this conversation.

Executive Summary: The Belfer National Cyber Power Index (NCPI) measures 30 countries’ cyber capabilities in the context of seven national objectives, using 32 intent indicators and 27 capability indicators with evidence collected from publicly available data.

In contrast to existing cyber related indices, we believe there is no single measure of cyber power. Cyber Power is made up of multiple components and should be considered in the context of a country’s national objectives. We take an all-of-country approach to measuring cyber power. By considering “all-of-country” we include all aspects under the control of a government where possible. Within the NCPI we measure government strategies, capabilities for defense and offense, resource allocation, the private sector, workforce, and innovation. Our assessment is both a measurement of proven power and potential, where the final score assumes that the government of that country can wield these capabilities effectively.

The NCPI has identified seven national objectives that countries pursue using cyber means. The seven objectives are:

  1. Surveilling and Monitoring Domestic Groups;
  2. Strengthening and Enhancing National Cyber Defenses;
  3. Controlling and Manipulating the Information Environment;
  4. Foreign Intelligence Collection for National Security;
  5. Commercial Gain or Enhancing Domestic Industry Growth;
  6. Destroying or Disabling an Adversary’s Infrastructure and Capabilities; and,
  7. Defining International Cyber Norms and Technical Standards.

In contrast to the broadly held view that cyber power means destroying or disabling an adversary’s infrastructure (commonly referred to as offensive cyber operations), offense is only one of these seven objectives countries pursue using cyber means.

Posted on September 11, 2020 at 6:15 AMView Comments

New US Electronic Warfare Platform

The Army is developing a new electronic warfare pod capable of being put on drones and on trucks.

…the Silent Crow pod is now the leading contender for the flying flagship of the Army’s rebuilt electronic warfare force. Army EW was largely disbanded after the Cold War, except for short-range jammers to shut down remote-controlled roadside bombs. Now it’s being urgently rebuilt to counter Russia and China, whose high-tech forces — unlike Afghan guerrillas — rely heavily on radio and radar systems, whose transmissions US forces must be able to detect, analyze and disrupt.

It’s hard to tell what this thing can do. Possibly a lot, but it’s all still in prototype stage.

Historically, cyber operations occurred over landline networks and electronic warfare over radio-frequency (RF) airwaves. The rise of wireless networks has caused the two to blur. The military wants to move away from traditional high-powered jamming, which filled the frequencies the enemy used with blasts of static, to precisely targeted techniques, designed to subtly disrupt the enemy’s communications and radar networks without their realizing they’re being deceived. There are even reports that “RF-enabled cyber” can transmit computer viruses wirelessly into an enemy network, although Wojnar declined to confirm or deny such sensitive details.

[…]

The pod’s digital brain also uses machine-learning algorithms to analyze enemy signals it detects and compute effective countermeasures on the fly, instead of having to return to base and download new data to human analysts. (Insiders call this cognitive electronic warfare). Lockheed also offers larger artificial intelligences to assist post-mission analysis on the ground, Wojnar said. But while an AI small enough to fit inside the pod is necessarily less powerful, it can respond immediately in a way a traditional system never could.

EDITED TO ADD (5/14): Here are two reports on Russian electronic warfare capabilities.

Posted on May 13, 2020 at 8:49 AMView Comments

Gen. Nakasone on US Cyber Command

Really interesting article by and interview with Paul M. Nakasone (Commander of US Cyber Command, Director of the National Security Agency, and Chief of the Central Security Service) in the current issue of Joint Forces Quarterly. He talks about the evolving role of US Cyber Command, and its new posture of “persistent engagement” using a “cyber-persistant force.”

From the article:

We must “defend forward” in cyberspace, as we do in the physical domains. Our naval forces do not defend by staying in port, and our airpower does not remain at airfields. They patrol the seas and skies to ensure they are positioned to defend our country before our borders are crossed. The same logic applies in cyberspace. Persistent engagement of our adversaries in cyberspace cannot be successful if our actions are limited to DOD networks. To defend critical military and national interests, our forces must operate against our enemies on their virtual territory as well. Shifting from a response outlook to a persistence force that defends forward moves our cyber capabilities out of their virtual garrisons, adopting a posture that matches the cyberspace operational environment.

From the interview:

As we think about cyberspace, we should agree on a few foundational concepts. First, our nation is in constant contact with its adversaries; we’re not waiting for adversaries to come to us. Our adversaries understand this, and they are always working to improve that contact. Second, our security is challenged in cyberspace. We have to actively defend; we have to conduct reconnaissance; we have to understand where our adversary is and his capabilities; and we have to understand their intent. Third, superiority in cyberspace is temporary; we may achieve it for a period of time, but it’s ephemeral. That’s why we must operate continuously to seize and maintain the initiative in the face of persistent threats. Why do the threats persist in cyberspace? They persist because the barriers to entry are low and the capabilities are rapidly available and can be easily repurposed. Fourth, in this domain, the advantage favors those who have initiative. If we want to have an advantage in cyberspace, we have to actively work to either improve our defenses, create new accesses, or upgrade our capabilities. This is a domain that requires constant action because we’re going to get reactions from our adversary.

[…]

Persistent engagement is the concept that states we are in constant contact with our adversaries in cyberspace, and success is determined by how we enable and act. In persistent engagement, we enable other interagency partners. Whether it’s the FBI or DHS, we enable them with information or intelligence to share with elements of the CIKR [critical infrastructure and key resources] or with select private-sector companies. The recent midterm elections is an example of how we enabled our partners. As part of the Russia Small Group, USCYBERCOM and the National Security Agency [NSA] enabled the FBI and DHS to prevent interference and influence operations aimed at our political processes. Enabling our partners is two-thirds of persistent engagement. The other third rests with our ability to act — that is, how we act against our adversaries in cyberspace. Acting includes defending forward. How do we warn, how do we influence our adversaries, how do we position ourselves in case we have to achieve outcomes in the future? Acting is the concept of operating outside our borders, being outside our networks, to ensure that we understand what our adversaries are doing. If we find ourselves defending inside our own networks, we have lost the initiative and the advantage.

[…]

The concept of persistent engagement has to be teamed with “persistent presence” and “persistent innovation.” Persistent presence is what the Intelligence Community is able to provide us to better understand and track our adversaries in cyberspace. The other piece is persistent innovation. In the last couple of years, we have learned that capabilities rapidly change; accesses are tenuous; and tools, techniques, and tradecraft must evolve to keep pace with our adversaries. We rely on operational structures that are enabled with the rapid development of capabilities. Let me offer an example regarding the need for rapid change in technologies. Compare the air and cyberspace domains. Weapons like JDAMs [Joint Direct Attack Munitions] are an important armament for air operations. How long are those JDAMs good for? Perhaps 5, 10, or 15 years, some-times longer given the adversary. When we buy a capability or tool for cyberspace…we rarely get a prolonged use we can measure in years. Our capabilities rarely last 6 months, let alone 6 years. This is a big difference in two important domains of future conflict. Thus, we will need formations that have ready access to developers.

Solely from a military perspective, these are obviously the right things to be doing. From a societal perspective — from the perspective a potential arms race — I’m much less sure. I’m also worried about the singular focus on nation-state actors in an environment where capabilities diffuse so quickly. But Cyber Command’s job is not cybersecurity and resilience.

The whole thing is worth reading, regardless of whether you agree or disagree.

EDITED TO ADD (2/26): As an example, US Cyber Command disrupted a Russian troll farm during the 2018 midterm elections.

Posted on February 22, 2019 at 5:35 AMView Comments

Estonia's Volunteer Cyber Militia

Interesting — although short and not very detailed — article about Estonia’s volunteer cyber-defense militia.

Padar’s militia of amateur IT workers, economists, lawyers, and other white-hat types are grouped in the city of Tartu, about 65 miles from the Russian border, and in the capital, Tallinn, about twice as far from it. The volunteers, who’ve inspired a handful of similar operations around the world, are readying themselves to defend against the kind of sustained digital attack that could cause mass service outages at hospitals, banks, and military bases, and with other critical operations, including voting systems. Officially, the team is part of Estonia’s 26,000-strong national guard, the Defense League.

[…]

Formally established in 2011, Padar’s unit mostly runs on about €150,000 ($172,000) in annual state funding, plus salaries for him and four colleagues. (If that sounds paltry, remember that the country’s median annual income is about €12,000.) Some volunteers oversee a website that calls out Russian propaganda posing as news directed at Estonians in Estonian, Russian, English, and German. Other members recently conducted forensic analysis on an attack against a military system, while yet others searched for signs of a broader campaign after discovering vulnerabilities in the country’s electronic ID cards, which citizens use to check bank and medical records and to vote. (The team says it didn’t find anything, and the security flaws were quickly patched.)

Mostly, the volunteers run weekend drills with troops, doctors, customs and tax agents, air traffic controllers, and water and power officials. “Somehow, this model is based on enthusiasm,” says Andrus Ansip, who was prime minister during the 2007 attack and now oversees digital affairs for the European Commission. To gauge officials’ responses to realistic attacks, the unit might send out emails with sketchy links or drop infected USB sticks to see if someone takes the bait.

EDITED TO ADD (3/11): Here’s a brief interview with the current commander — and one of the founding members of the unit. Here’s a longer presentation.

Posted on February 19, 2019 at 6:36 AMView Comments

Cyberinsurance and Acts of War

I had not heard about this case before. Zurich Insurance has refused to pay Mondelez International’s claim of $100 million in damages from NotPetya. It claims it is an act of war and therefore not covered. Mondelez is suing.

Those turning to cyber insurance to manage their exposure presently face significant uncertainties about its promise. First, the scope of cyber risks vastly exceeds available coverage, as cyber perils cut across most areas of commercial insurance in an unprecedented manner: direct losses to policyholders and third-party claims (clients, customers, etc.); financial, physical and IP damages; business interruption, and so on. Yet no cyber insurance policies cover this entire spectrum. Second, the scope of cyber-risk coverage under existing policies, whether traditional general liability or property policies or cyber-specific policies, is rarely comprehensive (to cover all possible cyber perils) and often unclear (i.e., it does not explicitly pertain to all manifestations of cyber perils, or it explicitly excludes some).

But it is in the public interest for Zurich and its peers to expand their role in managing cyber risk. In its ideal state, a mature cyber insurance market could go beyond simply absorbing some of the damage of cyberattacks and play a more fundamental role in engineering and managing cyber risk. It would allow analysis of data across industries to understand risk factors and develop common metrics and scalable solutions. It would allow researchers to pinpoint sources of aggregation risk, such as weak spots in widely relied-upon software and hardware platforms and services. Through its financial levers, the insurance industry can turn these insights into action, shaping private-sector behavior and promoting best practices internationally. Such systematic efforts to improve and incentivize cyber-risk management would redress the conditions that made NotPetya possible in the first place. This, in turn, would diminish the onus on governments to retaliate against attacks.

Posted on February 13, 2019 at 6:32 AMView Comments

1 2 3 14

Sidebar photo of Bruce Schneier by Joe MacInnis.