Entries Tagged "cloud computing"

Page 6 of 9

Yet Another Risk of Storing Everything in the Cloud

A hacker can social-engineer his way into your cloud storage and delete everything you have.

It turns out, a billing address and the last four digits of a credit card number are the only two pieces of information anyone needs to get into your iCloud account. Once supplied, Apple will issue a temporary password, and that password grants access to iCloud.

Apple tech support confirmed to me twice over the weekend that all you need to access someone’s AppleID is the associated e-mail address, a credit card number, the billing address, and the last four digits of a credit card on file.

Here’s how a hacker gets that information.

First you call Amazon and tell them you are the account holder, and want to add a credit card number to the account. All you need is the name on the account, an associated e-mail address, and the billing address. Amazon then allows you to input a new credit card. (Wired used a bogus credit card number from a website that generates fake card numbers that conform with the industry’s published self-check algorithm.) Then you hang up.

Next you call back, and tell Amazon that you’ve lost access to your account. Upon providing a name, billing address, and the new credit card number you gave the company on the prior call, Amazon will allow you to add a new e-mail address to the account. From here, you go to the Amazon website, and send a password reset to the new e-mail account. This allows you to see all the credit cards on file for the account—not the complete numbers, just the last four digits. But, as we know, Apple only needs those last four digits. We asked Amazon to comment on its security policy, but didn’t have anything to share by press time.

And it’s also worth noting that one wouldn’t have to call Amazon to pull this off. Your pizza guy could do the same thing, for example. If you have an AppleID, every time you call Pizza Hut, you’ve giving the 16-year-old on the other end of the line all he needs to take over your entire digital life.

The victim here is a popular technology journalist, so he got a level of tech support that’s not available to most of us. I believe this will increasingly become a problem, and that cloud providers will need better and more automated solutions.

Initial post.

EDITED TO ADD (8/13): Apple has changed its policy and stopped taking password reset requests over the phone, pretty much as a result of this incident.

EDITED TO ADD (8/17): A follow on story about how he recovered all of his data.

Posted on August 8, 2012 at 6:31 AMView Comments

Changing Surveillance Techniques for Changed Communications Technologies

New paper by Peter P. Swire—”From Real-Time Intercepts to Stored Records: Why Encryption Drives the Government to Seek Access to the Cloud”:

Abstract: This paper explains how changing technology, especially the rising adoption of encryption, is shifting law enforcement and national security lawful access to far greater emphasis on stored records, notably records stored in the cloud. The major and growing reliance on surveillance access to stored records results from the following changes:

(1) Encryption. Adoption of strong encryption is becoming much more common for data and voice communications, via virtual private networks, encrypted webmail, SSL web sessions, and encrypted Voice over IP voice communications.

(2) Declining effectiveness of traditional wiretaps. Traditional wiretap techniques at the ISP or local telephone network increasingly encounter these encrypted communications, blocking the effectiveness of the traditional techniques.

(3) New importance of the cloud. Government access to communications thus increasingly relies on a new and limited set of methods, notably featuring access to stored records in the cloud.

(4) The “haves” and “have-nots.” The first three changes create a new division between the “haves” and “have-nots” when it comes to government access to communications. The “have-nots” become increasingly dependent, for access to communications, on cooperation from the “have” jurisdictions.

Part 1 of the paper describes the changing technology of wiretaps and government access. Part 2 documents the growing adoption of strong encryption in a wide and growing range of settings of interest to government agencies. Part 3 explains how these technological trends create a major shift from real-time intercepts to stored records, especially in the cloud.

Posted on June 11, 2012 at 6:36 AMView Comments

Password Security at Linode

Here’s something good:

We have implemented sophisticated brute force protection for Linode Manager user accounts that combines a time delay on failed attempts, forced single threading of log in attempts from a given remote address, and automatic tarpitting of requests from attackers.

And this:

Some of you may have noticed a few changes to the Linode Manger over the past few weeks, most notably that accessing your “My Profile” and the “Account -> Users & Permissions” subtab now require password re-authentication.

The re-authentication is meant to protect your contact settings, password changes, and other preferences. The re-auth lasts for about 10 minutes, after which you’ll be asked to provide your password again on those sections of the Linode Manager.

It’s nice to see some companies implementing these sorts of security measures.

Posted on April 18, 2012 at 1:30 PMView Comments

Security Problems with U.S. Cloud Providers

Invasive U.S. surveillance programs, either illegal like the NSA’s wiretapping of AT&T phone lines or legal as authorized by the PATRIOT Act, are causing foreign companies to think twice about putting their data in U.S. cloud systems.

I think these are legitimate concerns. I don’t trust the U.S. government, law or no law, not to spy on my data if it thought it was a good idea. The more interesting question is: which government should I trust instead?

Posted on December 6, 2011 at 1:50 PMView Comments

Dropbox Security

I haven’t written about Dropbox’s security problems; too busy with the book. But here’s an excellent summary article from The Economist.

The meta-issue is pretty simple. If you expect a cloud provider to do anything more interesting than simply store your files for you and give them back to you at a later date, they are going to have to have access to the plaintext. For most people—Gmail users, Google Docs users, Flickr users, and so on—that’s fine. For some people, it isn’t. Those people should probably encrypt their files themselves before sending them into the cloud.

EDITED TO ADD (6/13): Another security issue with Dropbox.

Posted on May 23, 2011 at 6:47 AM

Security in 2020

There’s really no such thing as security in the abstract. Security can only be defined in relation to something else. You’re secure from something or against something. In the next 10 years, the traditional definition of IT security—­that it protects you from hackers, criminals, and other bad guys—­will undergo a radical shift. Instead of protecting you from the bad guys, it will increasingly protect businesses and their business models from you.

Ten years ago, the big conceptual change in IT security was deperimeterization. A wordlike grouping of 18 letters with both a prefix and a suffix, it has to be the ugliest word our industry invented. The concept, though—­the dissolution of the strict boundaries between the internal and external network—­was both real and important.

There’s more deperimeterization today than there ever was. Customer and partner access, guest access, outsourced e-mail, VPNs; to the extent there is an organizational network boundary, it’s so full of holes that it’s sometimes easier to pretend it isn’t there. The most important change, though, is conceptual. We used to think of a network as a fortress, with the good guys on the inside and the bad guys on the outside, and walls and gates and guards to ensure that only the good guys got inside. Modern networks are more like cities, dynamic and complex entities with many different boundaries within them. The access, authorization, and trust relationships are even more complicated.

Today, two other conceptual changes matter. The first is consumerization. Another ponderous invented word, it’s the idea that consumers get the cool new gadgets first, and demand to do their work on them. Employees already have their laptops configured just the way they like them, and they don’t want another one just for getting through the corporate VPN. They’re already reading their mail on their BlackBerrys or iPads. They already have a home computer, and it’s cooler than the standard issue IT department machine. Network administrators are increasingly losing control over clients.

This trend will only increase. Consumer devices will become trendier, cheaper, and more integrated; and younger people are already used to using their own stuff on their school networks. It’s a recapitulation of the PC revolution. The centralized computer center concept was shaken by people buying PCs to run VisiCalc; now it’s iPads and Android smart phones.

The second conceptual change comes from cloud computing: our increasing tendency to store our data elsewhere. Call it decentralization: our email, photos, books, music, and documents are stored somewhere, and accessible to us through our consumer devices. The younger you are, the more you expect to get your digital stuff on the closest screen available. This is an important trend, because it signals the end of the hardware and operating system battles we’ve all lived with. Windows vs. Mac doesn’t matter when all you need is a web browser. Computers become temporary; user backup becomes irrelevant. It’s all out there somewhere—­and users are increasingly losing control over their data.

During the next 10 years, three new conceptual changes will emerge, two of which we can already see the beginnings of. The first I’ll call deconcentration. The general-purpose computer is dying and being replaced by special-purpose devices. Some of them, like the iPhone, seem general purpose but are strictly controlled by their providers. Others, like Internet-enabled game machines or digital cameras, are truly special purpose. In 10 years, most computers will be small, specialized, and ubiquitous.

Even on what are ostensibly general-purpose devices, we’re seeing more special-purpose applications. Sure, you could use the iPhone’s web browser to access the New York Times website, but it’s much easier to use the NYT’s special iPhone app. As computers become smaller and cheaper, this trend will only continue. It’ll be easier to use special-purpose hardware and software. And companies, wanting more control over their users’ experience, will push this trend.

The second is decustomerization—­now I get to invent the really ugly words­—the idea that we get more of our IT functionality without any business relation­ship. We’re all part of this trend: every search engine gives away its services in exchange for the ability to advertise. It’s not just Google and Bing; most webmail and social networking sites offer free basic service in exchange for advertising, possibly with premium services for money. Most websites, even useful ones that take the place of client software, are free; they are either run altruistically or to facilitate advertising.

Soon it will be hardware. In 1999, Internet startup FreePC tried to make money by giving away computers in exchange for the ability to monitor users’ surfing and purchasing habits. The company failed, but computers have only gotten cheaper since then. It won’t be long before giving away netbooks in exchange for advertising will be a viable business. Or giving away digital cameras. Already there are companies that give away long-distance minutes in exchange for advertising. Free cell phones aren’t far off. Of course, not all IT hardware will be free. Some of the new cool hardware will cost too much to be free, and there will always be a need for concentrated computing power close to the user­—game systems are an obvious example—­but those will be the exception. Where the hardware costs too much to just give away, however, we’ll see free or highly subsidized hardware in exchange for locked-in service; that’s already the way cell phones are sold.

This is important because it destroys what’s left of the normal business rela­tionship between IT companies and their users. We’re not Google’s customers; we’re Google’s product that they sell to their customers. It’s a three-way relation­ship: us, the IT service provider, and the advertiser or data buyer. And as these noncustomer IT relationships proliferate, we’ll see more IT companies treating us as products. If I buy a Dell computer, then I’m obviously a Dell customer; but if I get a Dell computer for free in exchange for access to my life, it’s much less obvious whom I’m entering a business relationship with. Facebook’s continual ratcheting down of user privacy in order to satisfy its actual customers­—the advertisers—and enhance its revenue is just a hint of what’s to come.

The third conceptual change I’ve termed depersonization: computing that removes the user, either partially or entirely. Expect to see more software agents: programs that do things on your behalf, such as prioritize your email based on your observed preferences or send you personalized sales announcements based on your past behavior. The “people who liked this also liked” feature on many retail websites is just the beginning. A website that alerts you if a plane ticket to your favorite destination drops below a certain price is simplistic but useful, and some sites already offer this functionality. Ten years won’t be enough time to solve the serious artificial intelligence problems required to fully real­ize intelligent agents, but the agents of that time will be both sophisticated and commonplace, and they’ll need less direct input from you.

Similarly, connecting objects to the Internet will soon be cheap enough to be viable. There’s already considerable research into Internet-enabled medical devices, smart power grids that communicate with smart phones, and networked automobiles. Nike sneakers can already communicate with your iPhone. Your phone already tells the network where you are. Internet-enabled appliances are already in limited use, but soon they will be the norm. Businesses will acquire smart HVAC units, smart elevators, and smart inventory systems. And, as short-range communications­—like RFID and Bluetooth—become cheaper, everything becomes smart.

The “Internet of things” won’t need you to communicate. The smart appliances in your smart home will talk directly to the power company. Your smart car will talk to road sensors and, eventually, other cars. Your clothes will talk to your dry cleaner. Your phone will talk to vending machines; they already do in some countries. The ramifications of this are hard to imagine; it’s likely to be weirder and less orderly than the contemporary press describes it. But certainly smart objects will be talking about you, and you probably won’t have much control over what they’re saying.

One old trend: deperimeterization. Two current trends: consumerization and decentralization. Three future trends: deconcentration, decustomerization, and depersonization. That’s IT in 2020—­it’s not under your control, it’s doing things without your knowledge and consent, and it’s not necessarily acting in your best interests. And this is how things will be when they’re working as they’re intended to work; I haven’t even started talking about the bad guys yet.

That’s because IT security in 2020 will be less about protecting you from traditional bad guys, and more about protecting corporate business models from you. Deperimeterization assumes everyone is untrusted until proven otherwise. Consumerization requires networks to assume all user devices are untrustworthy until proven otherwise. Decentralization and deconcentration won’t work if you’re able to hack the devices to run unauthorized software or access unauthorized data. Deconsumerization won’t be viable unless you’re unable to bypass the ads, or whatever the vendor uses to monetize you. And depersonization requires the autonomous devices to be, well, autonomous.

In 2020—­10 years from now­—Moore’s Law predicts that computers will be 100 times more powerful. That’ll change things in ways we can’t know, but we do know that human nature never changes. Cory Doctorow rightly pointed out that all complex ecosystems have parasites. Society’s traditional parasites are criminals, but a broader definition makes more sense here. As we users lose control of those systems and IT providers gain control for their own purposes, the definition of “parasite” will shift. Whether they’re criminals trying to drain your bank account, movie watchers trying to bypass whatever copy protection studios are using to protect their profits, or Facebook users trying to use the service without giving up their privacy or being forced to watch ads, parasites will continue to try to take advantage of IT systems. They’ll exist, just as they always have existed, and­ like today­ security is going to have a hard time keeping up with them.

Welcome to the future. Companies will use technical security measures, backed up by legal security measures, to protect their business models. And unless you’re a model user, the parasite will be you.

This essay was originally written as a foreword to Security 2020, by Doug Howard and Kevin Prince.

Posted on December 16, 2010 at 6:27 AMView Comments

Kahn, Diffie, Clark, and Me at Bletchley Park

Saturday, I visited Bletchley Park to speak at the Annual ACCU Security Fundraising Conference. They had a stellar line of speakers this year, and I was pleased to be a part of the day.

Talk #1: “The Art of Forensic Warfare,” Andy Clark. Riffing on Sun Tzu’s The Art of War, Clark discussed the war—the back and forth—between cyber attackers and cyber forensics. This isn’t to say that we’re at war, but today’s attacker tactics are increasingly sophisticated and warlike. Additionally, the pace is greater, the scale of impact is greater, and the subjects of attack are broader. To defend ourselves, we need to be equally sophisticated and—possibly—more warlike.

Clark drew parallels from some of the chapters of Sun Tzu’s book combined with examples of the work at Bletchley Park. Laying plans: when faced with an attacker—especially one of unknown capabilities, tactics, and motives—it’s important to both plan ahead and plan for the unexpected. Attack by stratagem: increasingly, attackers are employing complex and long-term strategies; defenders need to do the same. Energy: attacks increasingly start off simple and get more complex over time; while it’s easier to defect primary attacks, secondary techniques tend to be more subtle and harder to detect. Terrain: modern attacks take place across a very broad range of terrain, including hardware, OSs, networks, communication protocols, and applications. The business environment under attack is another example of terrain, equally complex. The use of spies: not only human spies, but also keyloggers and other embedded eavesdropping malware. There’s a great World War II double-agent story about Eddie Chapman, codenamed ZIGZAG.

Talk #2: “How the Allies Suppressed the Second Greatest Secret of World War II,” David Kahn. This talk is from Kahn’s article of the same name, published in the Oct 2010 issue of The Journal of Military History. The greatest secret of World War II was the atom bomb; the second greatest secret was that the Allies were reading the German codes. But while there was a lot of public information in the years after World War II about Japanese codebreaking and its value, there was almost nothing about German codebreaking. Kahn discussed how this information was suppressed, and how historians writing World War II histories never figured it out. No one imagined as large and complex an operation as Bletchley Park; it was the first time in history that something like this had ever happened. Most of Kahn’s time was spent in a very interesting Q&A about the history of Bletchley Park and World War II codebreaking.

Talk #3: “DNSSec, A System for Improving Security of the Internet Domain Name System,” Whitfield Diffie. Whit talked about three watersheds in modern communications security. The first was the invention of the radio. Pre-radio, the most common communications security device was the code book. This was no longer enough when radio caused the amount of communications to explode. In response, inventors took the research in Vigenère ciphers and automated them. This automation led to an explosion of designs and an enormous increase in complexity—and the rise of modern cryptography.

The second watershed was shared computing. Before the 1960s, the security of computers was the physical security of computer rooms. Timesharing changed that. The result was computer security, a much harder problem than cryptography. Computer security is primarily the problem of writing good code. But writing good code is hard and expensive, so functional computer security is primarily the problem of dealing with code that isn’t good. Networking—and the Internet—isn’t just an expansion of computing capacity. The real difference is how cheap it is to set up communications connections. Setting up these connections requires naming: both IP addresses and domain names. Security, of course, is essential for this all to work; DNSSec is a critical part of that.

The third watershed is cloud computing, or whatever you want to call the general trend of outsourcing computation. Google is a good example. Every organization uses Google search all the time, which probably makes it the most valuable intelligence stream on the planet. How can you protect yourself? You can’t, just as you can’t whenever you hand over your data for storage or processing—you just have to trust your outsourcer. There are two solutions. The first is legal: an enforceable contract that protects you and your data. The second is technical, but mostly theoretical: homomorphic encryption that allows you to outsource computation of data without having to trust that outsourcer.

Diffie’s final point is that we’re entering an era of unprecedented surveillance possibilities. It doesn’t matter if people encrypt their communications, or if they encrypt their data in storage. As long as they have to give their data to other people for processing, it will be possible to eavesdrop on. Of course the methods will change, but the result will be an enormous trove of information about everybody.

Talk #4: “Reconceptualizing Security,” me. It was similar to this essay and this video.

Posted on November 9, 2010 at 6:01 AMView Comments

Sidebar photo of Bruce Schneier by Joe MacInnis.