Entries Tagged "BitLocker"

Page 1 of 1

Defeating Microsoft’s Trusted Platform Module

This is a really interesting story explaining how to defeat Microsoft’s TPM in 30 minutes—without having to solder anything to the motherboard.

Researchers at the security consultancy Dolos Group, hired to test the security of one client’s network, received a new Lenovo computer preconfigured to use the standard security stack for the organization. They received no test credentials, configuration details, or other information about the machine.

They were not only able to get into the BitLocker-encrypted computer, but then use the computer to get into the corporate network.

It’s the “evil maid attack.” It requires physical access to your computer, but you leave it in your hotel room all the time when you go out to dinner.

Original blog post.

Posted on August 9, 2021 at 6:19 AMView Comments

Encrypting Windows Hard Drives

Encrypting your Windows hard drives is trivially easy; choosing which program to use is annoyingly difficult. I still use Windows—yes, I know, don’t even start—and have intimate experience with this issue.

Historically, I used PGP Disk. I used it because I knew and trusted the designers. I even used it after Symantec bought the company. But big companies are always suspect, because there are a lot of ways for governments to manipulate them.

Then, I used TrueCrypt. I used it because it was open source. But the anonymous developers weirdly abdicated in 2014 when Microsoft released Windows 8. I stuck with the program for a while, saying:

For Windows, the options are basically BitLocker, Symantec’s PGP Disk, and TrueCrypt. I choose TrueCrypt as the least bad of all the options.

But soon after that, despite the public audit of TrueCrypt, I bailed for BitLocker.

BitLocker is Microsoft’s native file encryption program. Yes, it’s from a big company. But it was designed by my colleague and friend Niels Ferguson, whom I trust. (Here’s Niels’s statement from 2006 on back doors.) It was a snap decision; much had changed since 2006. (Here I am in March speculating about an NSA back door in BitLocker.) Specifically, Microsoft made a bunch of changes in BitLocker for Windows 8, including removing something Niels designed called the “Elephant Diffuser.”

The Intercept’s Micah Lee recently recommended BitLocker and got a lot of pushback from the security community. Last week, he published more research and explanation about the trade-offs. It’s worth reading. Microsoft told him they removed the Elephant Diffuser for performance reasons. And I agree with his ultimate conclusion:

Based on what I know about BitLocker, I think it’s perfectly fine for average Windows users to rely on, which is especially convenient considering it comes with many PCs. If it ever turns out that Microsoft is willing to include a backdoor in a major feature of Windows, then we have much bigger problems than the choice of disk encryption software anyway.

Whatever you choose, if trusting a proprietary operating system not to be malicious doesn’t fit your threat model, maybe it’s time to switch to Linux.

Micah also nicely explains how TrueCrypt is becoming antiquated, and not keeping up with Microsoft’s file system changes.

Lately, I am liking an obscure program called BestCrypt, by a Finnish company called Jetico. Micah quotes me:

Considering Schneier has been outspoken for decades about the importance of open source cryptography, I asked if he recommends that other people use BestCrypt, even though it’s proprietary. “I do recommend BestCrypt,” Schneier told me, “because I have met people at the company and I have a good feeling about them. Of course I don’t know for sure; this business is all about trust. But right now, given what I know, I trust them.”

I know it’s not a great argument. But, again, I’m trying to find the least bad option. And in the end, you either have to write your own software or trust someone else to write it for you.

But, yes, this should be an easier decision.

Posted on June 15, 2015 at 6:31 AMView Comments

Can the NSA Break Microsoft's BitLocker?

The Intercept has a new story on the CIA’s—yes, the CIA, not the NSA—efforts to break encryption. These are from the Snowden documents, and talk about a conference called the Trusted Computing Base Jamboree. There are some interesting documents associated with the article, but not a lot of hard information.

There’s a paragraph about Microsoft’s BitLocker, the encryption system used to protect MS Windows computers:

Also presented at the Jamboree were successes in the targeting of Microsoft’s disk encryption technology, and the TPM chips that are used to store its encryption keys. Researchers at the CIA conference in 2010 boasted about the ability to extract the encryption keys used by BitLocker and thus decrypt private data stored on the computer. Because the TPM chip is used to protect the system from untrusted software, attacking it could allow the covert installation of malware onto the computer, which could be used to access otherwise encrypted communications and files of consumers. Microsoft declined to comment for this story.

This implies that the US intelligence community—I’m guessing the NSA here—can break BitLocker. The source document, though, is much less definitive about it.

Power analysis, a side-channel attack, can be used against secure devices to non-invasively extract protected cryptographic information such as implementation details or secret keys. We have employed a number of publically known attacks against the RSA cryptography found in TPMs from five different manufacturers. We will discuss the details of these attacks and provide insight into how private TPM key information can be obtained with power analysis. In addition to conventional wired power analysis, we will present results for extracting the key by measuring electromagnetic signals emanating from the TPM while it remains on the motherboard. We will also describe and present results for an entirely new unpublished attack against a Chinese Remainder Theorem (CRT) implementation of RSA that will yield private key information in a single trace.

The ability to obtain a private TPM key not only provides access to TPM-encrypted data, but also enables us to circumvent the root-of-trust system by modifying expected digest values in sealed data. We will describe a case study in which modifications to Microsoft’s Bitlocker encrypted metadata prevents software-level detection of changes to the BIOS.

Differential power analysis is a powerful cryptanalytic attack. Basically, it examines a chip’s power consumption while it performs encryption and decryption operations and uses that information to recover the key. What’s important here is that this is an attack to extract key information from a chip while it is running. If the chip is powered down, or if it doesn’t have the key inside, there’s no attack.

I don’t take this to mean that the NSA can take a BitLocker-encrypted hard drive and recover the key. I do take it to mean that the NSA can perform a bunch of clever hacks on a BitLocker-encrypted hard drive while it is running. So I don’t think this means that BitLocker is broken.

But who knows? We do know that the FBI pressured Microsoft to add a backdoor to BitLocker in 2005. I believe that was unsuccessful.

More than that, we don’t know.

EDITED TO ADD (3/12): Starting with Windows 8, Microsoft removed the Elephant Diffuser from BitLocker. I see no reason to remove it other than to make the encryption weaker.

Posted on March 10, 2015 at 2:34 PMView Comments

Sidebar photo of Bruce Schneier by Joe MacInnis.