Privacy Implications of Tracking Wireless Access Points

Brian Krebs reports on research into geolocating routers:

Apple and the satellite-based broadband service Starlink each recently took steps to address new research into the potential security and privacy implications of how their services geolocate devices. Researchers from the University of Maryland say they relied on publicly available data from Apple to track the location of billions of devices globally—including non-Apple devices like Starlink systems—and found they could use this data to monitor the destruction of Gaza, as well as the movements and in many cases identities of Russian and Ukrainian troops.

Really fascinating implications to this research.

Research paper: “Surveilling the Masses with Wi-Fi-Based Positioning Systems:

Abstract: Wi-Fi-based Positioning Systems (WPSes) are used by modern mobile devices to learn their position using nearby Wi-Fi access points as landmarks. In this work, we show that Apple’s WPS can be abused to create a privacy threat on a global scale. We present an attack that allows an unprivileged attacker to amass a worldwide snapshot of Wi-Fi BSSID geolocations in only a matter of days. Our attack makes few assumptions, merely exploiting the fact that there are relatively few dense regions of allocated MAC address space. Applying this technique over the course of a year, we learned the precise
locations of over 2 billion BSSIDs around the world.

The privacy implications of such massive datasets become more stark when taken longitudinally, allowing the attacker to track devices’ movements. While most Wi-Fi access points do not move for long periods of time, many devices—like compact travel routers—are specifically designed to be mobile.

We present several case studies that demonstrate the types of attacks on privacy that Apple’s WPS enables: We track devices moving in and out of war zones (specifically Ukraine and Gaza), the effects of natural disasters (specifically the fires in Maui), and the possibility of targeted individual tracking by proxy—all by remotely geolocating wireless access points.

We provide recommendations to WPS operators and Wi-Fi access point manufacturers to enhance the privacy of hundreds of millions of users worldwide. Finally, we detail our efforts at responsibly disclosing this privacy vulnerability, and outline some mitigations that Apple and Wi-Fi access point manufacturers have implemented both independently and as a result of our work.

Posted on May 29, 2024 at 7:01 AM14 Comments

Lattice-Based Cryptosystems and Quantum Cryptanalysis

Quantum computers are probably coming, though we don’t know when—and when they arrive, they will, most likely, be able to break our standard public-key cryptography algorithms. In anticipation of this possibility, cryptographers have been working on quantum-resistant public-key algorithms. The National Institute for Standards and Technology (NIST) has been hosting a competition since 2017, and there already are several proposed standards. Most of these are based on lattice problems.

The mathematics of lattice cryptography revolve around combining sets of vectors—that’s the lattice—in a multi-dimensional space. These lattices are filled with multi-dimensional periodicities. The hard problem that’s used in cryptography is to find the shortest periodicity in a large, random-looking lattice. This can be turned into a public-key cryptosystem in a variety of different ways. Research has been ongoing since 1996, and there has been some really great work since then—including many practical public-key algorithms.

On April 10, Yilei Chen from Tsinghua University in Beijing posted a paper describing a new quantum attack on that shortest-path lattice problem. It’s a very dense mathematical paper—63 pages long—and my guess is that only a few cryptographers are able to understand all of its details. (I was not one of them.) But the conclusion was pretty devastating, breaking essentially all of the lattice-based fully homomorphic encryption schemes and coming significantly closer to attacks against the recently proposed (and NIST-approved) lattice key-exchange and signature schemes.

However, there was a small but critical mistake in the paper, on the bottom of page 37. It was independently discovered by Hongxun Wu from Berkeley and Thomas Vidick from the Weizmann Institute in Israel eight days later. The attack algorithm in its current form doesn’t work.

This was discussed last week at the Cryptographers’ Panel at the RSA Conference. Adi Shamir, the “S” in RSA and a 2002 recipient of ACM’s A.M. Turing award, described the result as psychologically significant because it shows that there is still a lot to be discovered about quantum cryptanalysis of lattice-based algorithms. Craig Gentry—inventor of the first fully homomorphic encryption scheme using lattices—was less impressed, basically saying that a nonworking attack doesn’t change anything.

I tend to agree with Shamir. There have been decades of unsuccessful research into breaking lattice-based systems with classical computers; there has been much less research into quantum cryptanalysis. While Chen’s work doesn’t provide a new security bound, it illustrates that there are significant, unexplored research areas in the construction of efficient quantum attacks on lattice-based cryptosystems. These lattices are periodic structures with some hidden periodicities. Finding a different (one-dimensional) hidden periodicity is exactly what enabled Peter Shor to break the RSA algorithm in polynomial time on a quantum computer. There are certainly more results to be discovered. This is the kind of paper that galvanizes research, and I am excited to see what the next couple of years of research will bring.

To be fair, there are lots of difficulties in making any quantum attack work—even in theory.

Breaking lattice-based cryptography with a quantum computer seems to require orders of magnitude more qubits than breaking RSA, because the key size is much larger and processing it requires more quantum storage. Consequently, testing an algorithm like Chen’s is completely infeasible with current technology. However, the error was mathematical in nature and did not require any experimentation. Chen’s algorithm consisted of nine different steps; the first eight prepared a particular quantum state, and the ninth step was supposed to exploit it. The mistake was in step nine; Chen believed that his wave function was periodic when in fact it was not.

Should NIST be doing anything differently now in its post–quantum cryptography standardization process? The answer is no. They are doing a great job in selecting new algorithms and should not delay anything because of this new research. And users of cryptography should not delay in implementing the new NIST algorithms.

But imagine how different this essay would be were that mistake not yet discovered? If anything, this work emphasizes the need for systems to be crypto-agile: to be able to easily swap algorithms in and out as research continues. And for using hybrid cryptography—multiple algorithms where the security rests on the strongest—where possible, as in TLS.

And—one last point—hooray for peer review. A researcher proposed a new result, and reviewers quickly found a fatal flaw in the work. Efforts to repair the flaw are ongoing. We complain about peer review a lot, but here it worked exactly the way it was supposed to.

This essay originally appeared in Communications of the ACM.

Posted on May 28, 2024 at 7:09 AM27 Comments

On the Zero-Day Market

New paper: “Zero Progress on Zero Days: How the Last Ten Years Created the Modern Spyware Market“:

Abstract: Spyware makes surveillance simple. The last ten years have seen a global market emerge for ready-made software that lets governments surveil their citizens and foreign adversaries alike and to do so more easily than when such work required tradecraft. The last ten years have also been marked by stark failures to control spyware and its precursors and components. This Article accounts for and critiques these failures, providing a socio-technical history since 2014, particularly focusing on the conversation about trade in zero-day vulnerabilities and exploits. Second, this Article applies lessons from these failures to guide regulatory efforts going forward. While recognizing that controlling this trade is difficult, I argue countries should focus on building and strengthening multilateral coalitions of the willing, rather than on strong-arming existing multilateral institutions into working on the problem. Individually, countries should focus on export controls and other sanctions that target specific bad actors, rather than focusing on restricting particular technologies. Last, I continue to call for transparency as a key part of oversight of domestic governments’ use of spyware and related components.

Posted on May 24, 2024 at 7:07 AM8 Comments

Personal AI Assistants and Privacy

Microsoft is trying to create a personal digital assistant:

At a Build conference event on Monday, Microsoft revealed a new AI-powered feature called “Recall” for Copilot+ PCs that will allow Windows 11 users to search and retrieve their past activities on their PC. To make it work, Recall records everything users do on their PC, including activities in apps, communications in live meetings, and websites visited for research. Despite encryption and local storage, the new feature raises privacy concerns for certain Windows users.

I wrote about this AI trust problem last year:

One of the promises of generative AI is a personal digital assistant. Acting as your advocate with others, and as a butler with you. This requires an intimacy greater than your search engine, email provider, cloud storage system, or phone. You’re going to want it with you 24/7, constantly training on everything you do. You will want it to know everything about you, so it can most effectively work on your behalf.

And it will help you in many ways. It will notice your moods and know what to suggest. It will anticipate your needs and work to satisfy them. It will be your therapist, life coach, and relationship counselor.

You will default to thinking of it as a friend. You will speak to it in natural language, and it will respond in kind. If it is a robot, it will look humanoid—­or at least like an animal. It will interact with the whole of your existence, just like another person would.

[…]

And you will want to trust it. It will use your mannerisms and cultural references. It will have a convincing voice, a confident tone, and an authoritative manner. Its personality will be optimized to exactly what you like and respond to.

It will act trustworthy, but it will not be trustworthy. We won’t know how they are trained. We won’t know their secret instructions. We won’t know their biases, either accidental or deliberate.

We do know that they are built at enormous expense, mostly in secret, by profit-maximizing corporations for their own benefit.

[…]

All of this is a long-winded way of saying that we need trustworthy AI. AI whose behavior, limitations, and training are understood. AI whose biases are understood, and corrected for. AI whose goals are understood. That won’t secretly betray your trust to someone else.

The market will not provide this on its own. Corporations are profit maximizers, at the expense of society. And the incentives of surveillance capitalism are just too much to resist.

We are going to need some sort of public AI to counterbalance all of these corporate AIs.

EDITED TO ADD (5/24): Lots of comments about Microsoft Recall and security:

This:

Because Recall is “default allow” (it relies on a list of things not to record) … it’s going to vacuum up huge volumes and heretofore unknown types of data, most of which are ephemeral today. The “we can’t avoid saving passwords if they’re not masked” warning Microsoft included is only the tip of that iceberg. There’s an ocean of data that the security ecosystem assumes is “out of reach” because it’s either never stored, or it’s encrypted in transit. All of that goes out the window if the endpoint is just going to…turn around and write it to disk. (And local encryption at rest won’t help much here if the data is queryable in the user’s own authentication context!)

This:

The fact that Microsoft’s new Recall thing won’t capture DRM content means the engineers do understand the risk of logging everything. They just chose to preference the interests of corporates and money over people, deliberately.

This:

Microsoft Recall is going to make post-breach impact analysis impossible. Right now IR processes can establish a timeline of data stewardship to identify what information may have been available to an attacker based on the level of access they obtained. It’s not trivial work, but IR folks can do it. Once a system with Recall is compromised, all data that has touched that system is potentially compromised too, and the ML indirection makes it near impossible to confidently identify a blast radius.

This:

You may be in a position where leaders in your company are hot to turn on Microsoft Copilot Recall. Your best counterargument isn’t threat actors stealing company data. It’s that opposing counsel will request the recall data and demand it not be disabled as part of e-discovery proceedings.

Posted on May 23, 2024 at 7:00 AM46 Comments

Detecting Malicious Trackers

From Slashdot:

Apple and Google have launched a new industry standard called “Detecting Unwanted Location Trackers” to combat the misuse of Bluetooth trackers for stalking. Starting Monday, iPhone and Android users will receive alerts when an unknown Bluetooth device is detected moving with them. The move comes after numerous cases of trackers like Apple’s AirTags being used for malicious purposes.

Several Bluetooth tag companies have committed to making their future products compatible with the new standard. Apple and Google said they will continue collaborating with the Internet Engineering Task Force to further develop this technology and address the issue of unwanted tracking.

This seems like a good idea, but I worry about false alarms. If I am walking with a friend, will it alert if they have a Bluetooth tracking device in their pocket?

Posted on May 21, 2024 at 7:09 AM43 Comments

IBM Sells Cybersecurity Group

IBM is selling its QRadar product suite to Palo Alto Networks, for an undisclosed—but probably surprisingly small—sum.

I have a personal connection to this. In 2016, IBM bought Resilient Systems, the startup I was a part of. It became part if IBM’s cybersecurity offerings, mostly and weirdly subservient to QRadar.

That was what seemed to be the problem at IBM. QRadar was IBM’s first acquisition in the cybersecurity space, and it saw everything through the lens of that SIEM system. I left the company two years after the acquisition, and near as I could tell, it never managed to figure the space out.

So now it’s Palo Alto’s turn.

Posted on May 20, 2024 at 7:04 AM10 Comments

Friday Squid Blogging: Emotional Support Squid

When asked what makes this an “emotional support squid” and not just another stuffed animal, its creator says:

They’re emotional support squid because they’re large, and cuddly, but also cheerfully bright and derpy. They make great neck pillows (and you can fidget with the arms and tentacles) for travelling, and, on a more personal note, when my mum was sick in the hospital I gave her one and she said it brought her “great comfort” to have her squid tucked up beside her and not be a nuisance while she was sleeping.

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Read my blog posting guidelines here.

Posted on May 17, 2024 at 5:04 PM100 Comments

FBI Seizes BreachForums Website

The FBI has seized the BreachForums website, used by ransomware criminals to leak stolen corporate data.

If law enforcement has gained access to the hacking forum’s backend data, as they claim, they would have email addresses, IP addresses, and private messages that could expose members and be used in law enforcement investigations.

[…]

The FBI is requesting victims and individuals contact them with information about the hacking forum and its members to aid in their investigation.

The seizure messages include ways to contact the FBI about the seizure, including an email, a Telegram account, a TOX account, and a dedicated page hosted on the FBI’s Internet Crime Complaint Center (IC3).

“The Federal Bureau of Investigation (FBI) is investigating the criminal hacking forums known as BreachForums and Raidforums,” reads a dedicated subdomain on the FBI’s IC3 portal.

“From June 2023 until May 2024, BreachForums (hosted at breachforums.st/.cx/.is/.vc and run by ShinyHunters) was operating as a clear-net marketplace for cybercriminals to buy, sell, and trade contraband, including stolen access devices, means of identification, hacking tools, breached databases, and other illegal services.”

“Previously, a separate version of BreachForums (hosted at breached.vc/.to/.co and run by pompompurin) operated a similar hacking forum from March 2022 until March 2023. Raidforums (hosted at raidforums.com and run by Omnipotent) was the predecessor hacking forum to both version of BreachForums and ran from early 2015 until February 2022.”

Posted on May 17, 2024 at 7:09 AM7 Comments

Sidebar photo of Bruce Schneier by Joe MacInnis.