
IN FOCUS
Editor: Sean Peisert, sppeisert@lbl.gov

2	 	 Copublished by the IEEE Computer and Reliability Societies �

1540-7993 © 2025 IEEE. All rights reserved, including  
rights for text and data mining, and training of 
artificial intelligence and similar technologies.

Agentic AI’s OODA Loop Problem

Barath Raghavan | Fastly and the University of Southern California 
Bruce Schneier  | Harvard Kennedy School and Inrupt

The OODA loop—for observe, orient, decide, act—is a framework for understand decision-making in 
adversarial situations. We apply the same framework to artificial intelligence agents, who have to make 
their decisions with untrustworthy observations and orientation. To solve this problem, we need new 
systems of input, processing, and output integrity. 

M any decades ago, U.S. Air 
Force Colonel John Boyd 

introduced the concept of the 
“OODA loop,” for Observe, Ori-
ent, Decide, and Act. These are the 
four steps of real-time continuous 
decision-making. Boyd developed it 
for fighter pilots, but it’s long been 
applied in artificial intelligence 
(AI) and robotics. An AI agent, 
like a pilot, executes the loop over 
and over, accomplishing its goals 
iteratively within an ever-changing 
environment. This is Anthropic’s 
definition: “Agents are models using 
tools in a loop.”1 

OODA Loops for Agentic AI
Traditional OODA analysis assumes 
trusted inputs and outputs, in the 
same way that classical AI assumed 
trusted sensors, controlled envi-
ronments, and physical boundar-
ies. This no longer holds true. AI 
agents don’t just execute OODA 
loops; they embed untrusted 
actors within them. Web-enabled 
large language models (LLMs) can 
query adversary-controlled sources 
mid-loop. Systems that allow AI to 
use large corpora of content, such 
as retrieval-augmented generation 
(https://en.wikipedia.org/wiki/

Retrieval-augmented_generation),  
can ingest poisoned documents. 
Tool-cal ling application pro-
gramming interfaces can execute 
untrusted code. Modern AI sensors 
can encompass the entire Internet; 
their environments are inherently 
adversarial. That means that fix-
ing AI hallucination is insufficient 
because even if the AI accurately 
interprets its inputs and produces 
corresponding output, it can be 
fully corrupt.

In 2022, Simon Willison identi-
fied a new class of attacks against 
AI systems: “prompt injection.”2 
Prompt injection is possible because 
an AI mixes untrusted inputs with 
trusted instructions and then con-
fuses one for the other. Willison’s 
insight was that this isn’t just a fil-
tering problem; it’s architectural. 
There is no privilege separation, 
and there is no separation between 
the data and control paths. The very 
mechanism that makes modern AI 
powerful—treating all inputs uni-
formly—is what makes it vulnerable.

The security challenges we face 
today are structural consequences 
of using AI for everything. 

1.	 Insecurities can have far-reaching 
effects. A single poisoned piece of 
training data can affect millions 

of downstream applications. In 
this environment, security debt 
accrues like technical debt.

2.	 AI security has a temporal asym-
metry. The temporal disconnect 
between training and deploy-
ment creates unauditable vulner-
abilities. Attackers can poison a 
model’s training data and then 
deploy an exploit years later. 
Integrity violations are frozen in 
the model. Models aren’t aware 
of previous compromises since 
each inference starts fresh and is 
equally vulnerable.

3.	 AI increasingly maintains 
state—in the form of chat his-
tory and key-value caches. These 
states accumulate compromises. 
Every iteration is potentially 
malicious, and cache poisoning 
persists across interactions.

4.	 Agents compound the risks. Pre-
trained OODA loops running in 
one or a dozen AI agents inherit 
all of these upstream compro-
mises. Model Context Protocol 
(MCP) and similar systems that 
allow AI to use tools create their 
own vulnerabilities that interact 
with each other. Each tool has its 
own OODA loop, which nests, 
interleaves, and races. Tool 
descriptions become injection 
vectors. Models can’t verify tool Digital Object Identifier 10.1109/MSEC.2025.3604105

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

https://orcid.org/0000-0003-1453-1083
https://en.wikipedia.org/wiki/Retrieval-augmented_generation
https://en.wikipedia.org/wiki/Retrieval-augmented_generation


www.computer.org/security� 3

semantics, only syntax. “Submit 
SQL query” might mean “exfil-
trate database” because an agent 
can be corrupted in prompts, 
training data, or tool definitions 
to do what the attacker wants. 
The abstraction layer itself can 
be adversarial.

For example, an attacker might 
want AI agents to leak all the secret 
keys that the AI knows to the 
attacker, who might have a collector 
running in bulletproof hosting in a 
poorly regulated jurisdiction. They 
could plant coded instructions in 
easily scraped web content, waiting 
for the next AI training set to include 
it. Once that happens, they can acti-
vate the behavior through the front 
door: tricking AI agents (think a 
lowly chatbot or an analytics engine 
or a coding bot or anything in 
between) that are increasingly tak-
ing their own actions, in an OODA 
loop, using untrustworthy input 
from a third-party user. This com-
promise persists in the conversa-
tion history and cached responses, 
spreading to multiple future inter-
actions and even to other AI agents.

All this requires us to reconsider 
risks to the agentic AI OODA loop, 
from top to bottom.

	■ Observe: The risks include adver-
sarial examples, prompt injection, 
and sensor spoofing. A sticker 
fools computer vision, a string 
fools an LLM. The observation 
layer lacks authentication and 
integrity.

	■ Orient: The risks include training 
data poisoning, context manipu-
lation, and semantic backdoors. 
The model’s worldview—its 
orientation—can be influenced 
by attackers months before 
deployment. Encoded behavior 
activates on trigger phrases.

	■ Decide: The risks include logic 
corruption via fine-tuning attacks, 
reward hacking, and objective mis-
alignment. The decision process 

itself becomes the payload. Mod-
els can be manipulated to trust 
malicious sources preferentially.

	■ Act: The risks include output 
manipulation, tool confusion, and 
action hijacking. MCP and similar 
protocols multiply attack surfaces. 
Each tool call trusts prior stages 
implicitly.

AI gives the old phrase “inside 
your adversary’s OODA loop” new 
meaning. For Boyd’s fighter pilots, 
it meant that you were operating 
faster than your adversary, able to 
act on current data while they were 
still on the previous iteration. With 
agentic AI, adversaries aren’t just 
metaphorically inside; they’re lit-
erally providing the observations 
and manipulating the output. We 
want adversaries inside our loop 
because that’s where the data are. 
AI’s OODA loops must observe 
untrusted sources to be useful. The 
competitive advantage, accessing 
web-scale information, is identical 
to the attack surface. The speed of 
your OODA loop is irrelevant when 
the adversary controls your sensors 
and actuators.

Worse, speed can itself be a vul-
nerability. The faster the loop, the 
less time for verification. Millisec-
ond decisions result in millisecond 
compromises.

The Source of the Problem
The fundamental problem is that 
AI must compress reality into 
model-legible forms. In this setting, 
adversaries can exploit the com-
pression. They don’t have to attack 
the territory; they can attack the 
map. Models lack local contextual 
knowledge. They process symbols, 
not meaning. A human sees a suspi-
cious URL; an AI sees valid syntax. 
And that semantic gap becomes a 
security gap.

Prompt injection might be 
unsolvable in today’s LLMs. LLMs 
process token sequences, but no 
mechanism exists to mark token 

privileges. Every solution proposed 
introduces new injection vectors: 
Delimiter? Attackers include delim-
iters. Instruction hierarchy? Attack-
ers claim priority. Separate models? 
Double the attack surface. Security 
requires boundaries, but LLMs dis-
solve boundaries. More generally, 
existing mechanisms to improve 
models won’t help protect against 
attack. Fine-tuning preserves back-
doors. Reinforcement learning 
with human feedback <AU: Kindly 
check that the expansion of RLHF 
is correct.> adds human prefer-
ences without removing model 
biases. Each training phase com-
pounds prior compromises.

This is Ken Thompson’s “trust-
ing trust” attack all over again.3 
Poisoned states generate poisoned 
outputs, which poison future states. 
Try to summarize the conversation 
history? The summary includes the 
injection. Clear the cache to remove 
the poison? Lose all context. Keep 
the cache for continuity? Keep the 
contamination. Stateful systems 
can’t forget attacks, and so mem-
ory becomes a liability. Adversaries 
can craft inputs that corrupt future 
outputs.

This is the agentic AI security tri-
lemma. Fast, smart, secure; pick any 
two. Fast and smart—you can’t ver-
ify your inputs. Smart and secure—
you check everything, slowly, 
because AI itself can’t be used for 
this. Secure and fast—you’re stuck 
with models with intentionally lim-
ited capabilities.

This trilemma isn’t unique to AI. 
Some autoimmune disorders are 
examples of molecular mimicry—
when biological recognition systems 
fail to distinguish self from nonself. 
The mechanism designed for pro-
tection becomes the pathology as 
T cells attack healthy tissue or fail 
to attack pathogens and bad cells. 
AI exhibits the same kind of rec-
ognition failure. No digital immu-
nological markers separate trusted 
instructions from hostile input. The 

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



IN FOCUS

4	 IEEE Security & Privacy�

model’s core capability, following 
instructions in natural language, is 
inseparable from its vulnerability. 
Or like oncogenes, the normal func-
tion and the malignant behavior 
share identical machinery.

Prompt injection is semantic 
mimicry: adversarial instructions 
that resemble legitimate prompts, 
which trigger self-compromise. The 
immune system can’t add better 
recognition without rejecting legiti-
mate cells. AI can’t filter malicious 
prompts without rejecting legiti-
mate instructions. Immune systems 
can’t verify their own recognition 
mechanisms, and AI systems can’t 
verify their own integrity because 
the verification system uses the 
same corrupted mechanisms.

In security, we often assume that 
foreign/hostile code looks different 
from legitimate instructions, and 
we use signatures, patterns, and sta-
tistical anomaly detection to detect 
it. But getting inside someone’s 
AI OODA loop uses the system’s 
native language. The attack is indis-
tinguishable from normal operation 
because it is normal operation. The 
vulnerability isn’t a defect—it’s the 
feature working correctly.

Where to Go Next?
The shift to an AI-saturated world has 
been dizzying. Seemingly overnight, 
we have AI in every technology prod-
uct, with promises of even more—
and agents as well. So where does that 
leave us with respect to security?

Physical constraints protected 
Boyd’s fighter pilots. Radar returns 
couldn’t lie about physics; fooling 
them, through stealth or jamming, 
constituted some of the most suc-
cessful attacks against such systems 
that are still in use today. Observa-
tions were authenticated by their 
presence. Tampering meant physical 
access. But semantic observations 
have no physics. When every AI 
observation is potentially corrupted, 
integrity violations span the stack. 

Text can claim anything, and images 
can show impossibilities. In training, 
we face poisoned datasets and back-
doored models. In inference, we 
face adversarial inputs and prompt 
injection. During operation, we face 
a contaminated context and persis-
tent compromise. We need semantic 
integrity: verifying not just data but 
interpretation, not just content but 
context; not just information but 
understanding. We can add check-
sums, signatures, and audit logs. But 
how do you checksum a thought? 
How do you sign semantics? How 
do you audit attention?

Computer security has evolved 
over the decades. We addressed 
availability despite failures through 
replication and decentralization. We 
addressed confidentiality despite 
breaches using authenticated encryp-
tion. Now we need to address integ-
rity despite corruption.4

Trustworthy AI agents require 
integrity because we can’t build reli-
able systems on unreliable founda-
tions. The question isn’t whether 
we can add integrity to AI but 
whether the architecture permits 
integrity at all.

AI OODA loops and integrity 
aren’t fundamentally opposed, but 
today’s AI agents observe the Inter-
net, orient via statistics, decide 
probabilistically, and act without 
verification. We built a system that 
trusts everything, and now we hope 
for a semantic firewall to keep it safe. 
The adversary isn’t inside the loop 
by accident; it’s there by architecture. 
Web-scale AI means web-scale integ-
rity failure. Every capability corrupts.

Integrity isn’t a feature you add; it’s 
an architecture you choose. So far, 

we have built AI systems where “fast” 
and “smart” preclude “secure.” We 
optimized for capability over verifica-
tion, for accessing web-scale data over 
ensuring trust. AI agents will be even 
more powerful—and increasingly 

autonomous. And without integrity, 
they will also be dangerous. 

References
1.	 S. Willison, Simon Willison’s Weblog, 

May 22, 2025. [Online]. Available: 
https://simonwillison.net/2025/
May/22/tools-in-a-loop/

2.	 S. Willison, “Prompt injection attacks 
against GPT-3,” Simon Willison’s Weblog, 
Sep. 12, 2022. [Online]. Available: 
https://simonwillison.net/2022/
Sep/12/prompt-injection/

3.	 K. Thompson, “Reflections on trust-
ing trust,” Commun. ACM, vol. 27, no. 
8, Aug. 1984. [Online]. Available:  
https://www.cs.cmu.edu/~rdriley/487/ 
papers/Thompson_1984_Reflection 
sonTrustingTrust.pdf 

4.	 B. Schneier, “The age of integrity,” 
IEEE Security Privacy, vol. 23, no. 3, 
p. 96, May/Jun. 2025. [Online]. Avail-
able: https://www.computer.org/csdl/ 
magazine/sp/2025/03/11038984/ 
27COaJtjDOM

Barath Raghavan is a distinguished 
engineer at Fastly, San Francisco, 
CA 94107 USA, and is a profes-
sor of computer science at the 
University of Southern Califor-
nia, Los Angeles, CA 90007 USA. 
His research interests include 
network protocols, security and 
privacy, and distributed sys-
tems. Raghavan received a Ph.D. 
from the University of Califor-
nia, San Diego. Contact him at 
barathraghavan@gmail.com. 

Bruce Schneier is a fellow and lec-
turer at the Harvard Kennedy 
School, Cambridge, MA 02138 
USA, and the chief security tech-
nology officer at Inrupt Inc., Bos-
ton, MA 02210 USA. His research 
interests include cybersecurity, 
systems security, and reimagin-
ing democracy and capitalism. 
Schneier received an M.S. in com-
puter science from American Uni-
versity. Contact him at schneier@
schneier.com.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

https://simonwillison.net/2025/May/22/tools-in-a-loop/
https://simonwillison.net/2025/May/22/tools-in-a-loop/
https://simonwillison.net/2022/Sep/12/prompt-injection/
https://simonwillison.net/2022/Sep/12/prompt-injection/
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf
https://www.computer.org/csdl/magazine/sp/2025/03/11038984/27COaJtjDOM
https://www.computer.org/csdl/magazine/sp/2025/03/11038984/27COaJtjDOM
https://www.computer.org/csdl/magazine/sp/2025/03/11038984/27COaJtjDOM
mailto:barathraghavan@gmail.com
mailto:schneier@schneier.com
mailto:schneier@schneier.com

