This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IN FOCUS

Editor: Sean Peisert, sppeisert@Ibl.gov .

Agentic Al's OODA Loop Problem

Barath Raghavan | Fastly and the University of Southern California

Bruce Schneier

| Harvard Kennedy School and Inrupt

The OODA loop—for observe, orient, decide, act—is a framework for understand decision-making in
adversarial situations. We apply the same framework to artificial intelligence agents, who have to make
their decisions with untrustworthy observations and orientation. To solve this problem, we need new
systems of input, processing, and output integrity.

M any decades ago, U.S. Air
Force Colonel John Boyd
introduced the concept of the
“OODA loop,” for Observe, Ori-
ent, Decide, and Act. These are the
four steps of real-time continuous
decision-making. Boyd developed it
for fighter pilots, but it’s long been
applied in artificial intelligence
(AI) and robotics. An Al agent,
like a pilot, executes the loop over
and over, accomplishing its goals
iteratively within an ever-changing
environment. This is Anthropic’s
definition: “Agents are models using

tools in a loop.”!

OODA Loops for Agentic Al
Traditional OODA analysis assumes
trusted inputs and outputs, in the
same way that classical Al assumed
trusted sensors, controlled envi-
ronments, and physical boundar-
ies. This no longer holds true. Al
agents don't just execute OODA
loops; they embed untrusted
actors within them. Web-enabled
large language models (LLMs) can
query adversary-controlled sources
mid-loop. Systems that allow AI to
use large corpora of content, such
as retrieval-augmented generation

(https://en.wikipedia.org/wiki/

Digital Object Identifier 10.1109/MSEC.2025.3604105

Copublished by the IEEE Computer and Reliability Societies

Retrieval-augmented _generation),
can ingest poisoned documents.
Tool-calling application pro-
gramming interfaces can execute
untrusted code. Modern Al sensors
can encompass the entire Internet;
their environments are inherently
adversarial. That means that fix-
ing Al hallucination is insufficient
because even if the Al accurately
interprets its inputs and produces
corresponding output, it can be
fully corrupt.

In 2022, Simon Willison identi-
fied a new class of attacks against
Al systems: “prompt injection.”
Prompt injection is possible because
an Al mixes untrusted inputs with
trusted instructions and then con-
fuses one for the other. Willison’s
insight was that this isn’t just a fil-
tering problem; it’s architectural.
There is no privilege separation,
and there is no separation between
the data and control paths. The very
mechanism that makes modern Al
powerful—treating all inputs uni-
formly—is what makes it vulnerable.

The security challenges we face
today are structural consequences
of using Al for everything.

1. Insecurities can have far-reaching
effects. A single poisoned piece of
training data can affect millions

of downstream applications. In
this environment, security debt
accrues like technical debt.

2. Al security has a temporal asym-
metry. The temporal disconnect
between training and deploy-
ment creates unauditable vulner-
abilities. Attackers can poison a
model’s training data and then
deploy an exploit years later.
Integrity violations are frozen in
the model. Models aren’t aware
of previous compromises since
each inference starts fresh and is
equally vulnerable.

3. Al increasingly maintains
state—in the form of chat his-
tory and key-value caches. These
states accumulate compromises.
Every iteration is potentially
malicious, and cache poisoning
persists across interactions.

4. Agents compound the risks. Pre-
trained OODA loops running in
one or a dozen Al agents inherit
all of these upstream compro-
mises. Model Context Protocol
(MCP) and similar systems that
allow AI to use tools create their
own vulnerabilities that interact
with each other. Each tool has its
own OODA loop, which nests,

Tool

descriptions become injection

interleaves, and races.

vectors. Models can't verify tool

1540-7993 © 2025 IEEE. All rights reserved, including
rights for text and data mining, and training of
artificial intelligence and similar technologies.


https://orcid.org/0000-0003-1453-1083
https://en.wikipedia.org/wiki/Retrieval-augmented_generation
https://en.wikipedia.org/wiki/Retrieval-augmented_generation

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

semantics, only syntax. “Submit
SQL query” might mean “exfil-
trate database” because an agent
can be corrupted in prompts,
training data, or tool definitions
to do what the attacker wants.
The abstraction layer itself can
be adversarial.

For example, an attacker might
want Al agents to leak all the secret
keys that the AI knows to the
attacker, who might have a collector
running in bulletproof hosting in a
poorly regulated jurisdiction. They
could plant coded instructions in
easily scraped web content, waiting
for the next Al training set to include
it. Once that happens, they can acti-
vate the behavior through the front
door: tricking Al agents (think a
lowly chatbot or an analytics engine
or a coding bot or anything in
between) that are increasingly tak-
ing their own actions, in an OODA
loop, using untrustworthy input
from a third-party user. This com-
promise persists in the conversa-
tion history and cached responses,
spreading to multiple future inter-
actions and even to other Al agents.

All this requires us to reconsider
risks to the agentic Al OODA loop,
from top to bottom.

= Observe: The risks include adver-
sarial examples, prompt injection,
and sensor spoofing. A sticker
fools computer vision, a string
fools an LLM. The observation
layer lacks authentication and
integrity.

= Orient: The risks include training
data poisoning, context manipu-
lation, and semantic backdoors.
The models worldview—its
orientation—can be influenced
by attackers months before
deployment. Encoded behavior
activates on trigger phrases.

= Decide: The risks include logic
corruption via fine-tuning attacks,
reward hacking, and objective mis-
alignment. The decision process

www.computer.org/security

itself becomes the payload. Mod-
els can be manipulated to trust
malicious sources preferentially.

= Act: The risks include output
manipulation, tool confusion, and
action hijacking. MCP and similar
protocols multiply attack surfaces.
Each tool call trusts prior stages
implicitly.

Al gives the old phrase “inside
your adversary’s OODA loop” new
meaning. For Boyd’s fighter pilots,
it meant that you were operating
faster than your adversary, able to
act on current data while they were
still on the previous iteration. With
agentic Al, adversaries aren’t just
metaphorically inside; they’re lit-
erally providing the observations
and manipulating the output. We
want adversaries inside our loop
because that’s where the data are.
ATl's OODA loops must observe
untrusted sources to be useful. The
competitive advantage, accessing
web-scale information, is identical
to the attack surface. The speed of
your OODA loop is irrelevant when
the adversary controls your sensors
and actuators.

Worse, speed can itself be a vul-
nerability. The faster the loop, the
less time for verification. Millisec-
ond decisions result in millisecond
compromises.

The Source of the Problem
The fundamental problem is that
Al must compress reality into
model-legible forms. In this setting,
adversaries can exploit the com-
pression. They don’t have to attack
the territory; they can attack the
map. Models lack local contextual
knowledge. They process symbols,
not meaning. A human sees a suspi-
cious URL; an Al sees valid syntax.
And that semantic gap becomes a
security gap.

Prompt injection might be
unsolvable in today’s LLMs. LLMs
process token sequences, but no
mechanism exists to mark token

privileges. Every solution proposed
introduces new injection vectors:
Delimiter? Attackers include delim-
iters. Instruction hierarchy? Attack-
ers claim priority. Separate models?
Double the attack surface. Security
requires boundaries, but LLMs dis-
solve boundaries. More generally,
existing mechanisms to improve
models won't help protect against
attack. Fine-tuning preserves back-
doors. Reinforcement learning
with human feedback <AU: Kindly
check that the expansion of RLHF
is correct.> adds human prefer-
ences without removing model
biases. Each training phase com-
pounds prior compromises.

This is Ken Thompson’s “trust-
ing trust” attack all over again.
Poisoned states generate poisoned
outputs, which poison future states.
Try to summarize the conversation
history? The summary includes the
injection. Clear the cache to remove
the poison? Lose all context. Keep
the cache for continuity? Keep the
contamination. Stateful systems
can't forget attacks, and so mem-
ory becomes a liability. Adversaries
can craft inputs that corrupt future
outputs.

This is the agentic Al security tri-
lemma. Fast, smart, secure; pick any
two. Fast and smart—you can’t ver-
ify your inputs. Smart and secure—
you check everything, slowly,
because Al itself can’t be used for
this. Secure and fast—you're stuck
with models with intentionally lim-
ited capabilities.

This trilemma isn’t unique to AL
Some autoimmune disorders are
examples of molecular mimicry—
when biological recognition systems
fail to distinguish self from nonself.
The mechanism designed for pro-
tection becomes the pathology as
T cells attack healthy tissue or fail
to attack pathogens and bad cells.
Al exhibits the same kind of rec-
ognition failure. No digital immu-
nological markers separate trusted
instructions from hostile input. The



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

| INFOCus

model’s core capability, following
instructions in natural language, is
inseparable from its vulnerability.
Or like oncogenes, the normal func-
tion and the malignant behavior
share identical machinery.

Prompt injection is semantic
mimicry: adversarial instructions
that resemble legitimate prompts,
which trigger self-compromise. The
immune system can't add better
recognition without rejecting legiti-
mate cells. Al can't filter malicious
prompts without rejecting legiti-
mate instructions. Immune systems
can't verify their own recognition
mechanisms, and Al systems can’t
verify their own integrity because
the verification system uses the
same corrupted mechanisms.

In security, we often assume that
foreign/hostile code looks different
from legitimate instructions, and
we use signatures, patterns, and sta-
tistical anomaly detection to detect
it. But getting inside someone’s
Al OODA loop uses the system’s
native language. The attack is indis-
tinguishable from normal operation
because it is normal operation. The
vulnerability isn’'t a defect—it’s the
teature working correctly.

Where to Go Next?
The shift to an Al-saturated world has
been dizzying. Seemingly overnight,
we have Al in every technology prod-
uct, with promises of even more—
and agents as well. So where does that
leave us with respect to security?
Physical constraints protected
Boyd’s fighter pilots. Radar returns
couldn’t lie about physics; fooling
them, through stealth or jamming,
constituted some of the most suc-
cessful attacks against such systems
that are still in use today. Observa-
tions were authenticated by their
presence. Tampering meant physical
access. But semantic observations
have no physics. When every Al
observation is potentially corrupted,
integrity violations span the stack.

IEEE Security & Privacy

Text can claim anything, and images
can show impossibilities. In training,
we face poisoned datasets and back-
doored models. In inference, we
face adversarial inputs and prompt
injection. During operation, we face
a contaminated context and persis-
tent compromise. We need semantic
integrity: verifying not just data but
interpretation, not just content but
context; not just information but
understanding. We can add check-
sums, signatures, and audit logs. But
how do you checksum a thought?
How do you sign semantics? How
do you audit attention?

Computer security has evolved
over the decades. We addressed
availability despite failures through
replication and decentralization. We
addressed confidentiality despite
breaches using authenticated encryp-
tion. Now we need to address integ-
rity despite corruption.*

Trustworthy Al agents require
integrity because we can’t build reli-
able systems on unreliable founda-
tions. The question isn’t whether
we can add integrity to Al but
whether the architecture permits
integrity at all.

AI OODA loops and integrity
aren’t fundamentally opposed, but
today’s Al agents observe the Inter-
decide
probabilistically, and act without

net, orient via statistics,

verification. We built a system that
trusts everything, and now we hope
for a semantic firewall to keep it safe.
The adversary isn’t inside the loop
by accident; it’s there by architecture.
Web-scale Al means web-scale integ-
rity failure. Every capability corrupts.

I ntegrity isn’t a feature you add; it’s
an architecture you choose. So far,
we have built Al systems where “fast”
and “smart” preclude “secure” We
optimized for capability over verifica-
tion, for accessing web-scale data over
ensuring trust. Al agents will be even
more powerful—and increasingly

autonomous. And without integrity,
they will also be dangerous. m

References

1. S. Willison, Simon Willison’s Weblog,
May 22, 2025. [Online]. Available:
https://simonwillison.net/2025/
May/22/tools-in-a-loop/

2. S. Willison, “Prompt injection attacks
against GPT-3;” Simon Willison's Weblog,
Sep. 12, 2022. [Online]. Available:
https://simonwillison.net/2022/
Sep/12/prompt-injection/

3. K. Thompson, “Reflections on trust-
ing trust,” Commun. ACM, vol. 27, no.
8, Aug. 1984. [Online]. Available:
https://wwwcscmu.edu/~rdriley/487/
papers/Thompson_1984 Reflection
sonTrustingTrust.pdf

4. B. Schneier, “The age of integrity;
IEEE Security Privacy, vol. 23, no. 3,
p- 96, May/Jun. 2025. [Online]. Avail-
able: https:/ /www.computer.org/csdl/
magazine/sp/2025/03/11038984/
27COaJDOM

Barath Raghavan is a distinguished
engineer at Fastly, San Francisco,
CA 94107 USA, and is a profes-
sor of computer science at the
University of Southern Califor-
nia, Los Angeles, CA 90007 USA.
His research interests include
network protocols, security and
privacy, and distributed sys-

tems. Raghavan received a Ph.D.

from the University of Califor-
nia, San Diego. Contact him at
barathraghavan@gmail.com.

Bruce Schneier is a fellow and lec-
turer at the Harvard Kennedy
School, Cambridge, MA 02138
USA, and the chief security tech-
nology officer at Inrupt Inc., Bos-
ton, MA 02210 USA. His research
interests include cybersecurity,
systems security, and reimagin-
ing democracy and capitalism.
Schneier received an M.S. in com-
puter science from American Uni-
versity. Contact him at schneier@
schneier.com.


https://simonwillison.net/2025/May/22/tools-in-a-loop/
https://simonwillison.net/2025/May/22/tools-in-a-loop/
https://simonwillison.net/2022/Sep/12/prompt-injection/
https://simonwillison.net/2022/Sep/12/prompt-injection/
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf
https://www.computer.org/csdl/magazine/sp/2025/03/11038984/27COaJtjDOM
https://www.computer.org/csdl/magazine/sp/2025/03/11038984/27COaJtjDOM
https://www.computer.org/csdl/magazine/sp/2025/03/11038984/27COaJtjDOM
mailto:barathraghavan@gmail.com
mailto:schneier@schneier.com
mailto:schneier@schneier.com

