
Twofish Technical Report #7

Key Separation in Twofish

John Kelsey∗

April 7, 2000

Abstract

In [Mur00], Murphy raises questions about key separation in Twofish. We discuss this property of
the Twofish key schedule, and compare it with other block ciphers. While every block cipher has this
property in some abstract sense, the specific structure of Twofish makes it an interesting property to
consider. We explain why we don’t believe this property leads to any interesting attacks on Twofish, and
describe what such attacks will have to look like if they do exist.

1 Introduction

In [Mur00], Murphy raises questions about a property in Twofish he calls “key separation.” Murphy explains
the property as the ability for an attacker to guess 64 bits of a 128-bit Twofish key, and to then be faced
with only 264 possible keys with those 64 guessed bits. This property is present in any block cipher with
a 128-bit key. The difference between other block ciphers and Twofish is that Twofish uses key-dependent
S-boxes, defined by only half of the total key material. Since the quality of the S-boxes is so critical to the
security of Twofish, we need to consider attacks in which either:

1. The attacker first guesses S, and then mounts an attack based on his guess.

2. The attacker waits for an especially weak S, and detects this weak S in some way.

In this note, we discuss this property in more detail, first for all block ciphers, and then for Twofish. We
discuss the way the property comes about in Twofish, and the necessary mechanics of any attack based on
the property. We explain why we don’t expect any attack to come from this property, and review some
analysis we’ve done in other technical reports involving this class of attack.

2 The Twofish Key Schedule and Key Separation

To understand Murphy’s argument, it is necessary to know something about the Twofish key schedule. In
Twofish, the key schedule has three phases:

1. Split the N bit key into three N/2 bit pieces: Me, Mo, and S.

(a) Me is taken from the even-numbered key words.

(b) Mo is taken from the odd-numbered key words.
∗Counterpane Internet Security, Inc. kelsey@counterpane.com

1



(c) S is the result of an RS code applied to Me, Mo, whose properties make both partial-guessing
attacks against the cipher and related-key attacks quite difficult.

2. Use Me and Mo together to generate the whitening keys and the round subkeys.

3. Use S to define the key-dependent S-boxes used by the cipher during encryption and decryption.

Now, S is half the size of the full key. When a 128-bit key is used, there are 264 possible sets of key-dependent
S-boxes available. When a 256-bit key is used, there are 2128 possible sets of S-boxes available. Further, one
quarter of the bits of S are used for each of the four key-dependent S-boxes. Thus, for Twofish-128, each
S-box has 216 possibilities, while for Twofish-256, each S-box has 232 possibilities.

2.0.1 Why Use Key-Dependent S-boxes?

Making S half the size of the full key was a deliberate design decision. Using the full key to define S would
have been easy enough, but would have approximately halved throughput in Twofish implementations with
zero keying, and would have doubled the time necessary to do the full key schedule precomputation for bulk
encryption. Assuming some restrictions on minimal allowed throughput for highly key-agile implementations,
this would have required a decrease in the number of rounds of the cipher.
The key-dependent S-boxes in Twofish are part of our security margin, much the same way as the large
number of rounds in Serpent or the heterogeneous structure of MARS are part of theirs. Key-dependent
S-boxes provide two different kinds of security margin:

1. Any attack that takes note of the specific inputs and outputs (or input and output differences) to
the g function must apparently also take note of the S-box contents. This forces attackers into either
guessing S (and thus beginning their attack by guessing half the key) or into ignoring the specifics of
g for most of the attack.

2. There may be properties of S-boxes we know nothing about, which are as important as differential
and linear properties. Knowing nothing about these, we have no way of knowing we haven’t chosen
especially bad S-boxes with respect to these properties. But unless the majority of random S-boxes
are especially bad with respect to these properties, the key-dependent S-boxes will probably ensure
that most keys aren’t vulnerable to attacks based on these properties. (Note, however, that our
key-dependent S-boxes are constructed from fixed S-boxes and XORed-in key bytes. However, these
involve far more S-box lookups (three times as many for 128-bit keys), and so may be expected to be
less vulnerable to attacks.)

Since the purpose of the key-dependent S-boxes is to provide additional security margin, we saw no reason
why the whole key must be involved in defining them. Additionally, the key dependent S-boxes help frustrate
related-key attacks.

2.1 Key Separation

The basic argument of Murphy is as follows: An attacker can guess S. For Twofish-128, this leaves only
264 possible subkey sequences that are consistent with this guess. That is, having guessed half the key bits,
we’re left with half the key bits. This is no different than any other cipher. The concern here is that Twofish
uses half its effective key bits in a way that’s extremely important for the strength of the rest of the cipher.
This compares in some sense to IDEA, whose multiplicative keys are much more important for its ultimate
security than its additive keys.
It is important to note the implications of this property. An attacker cannot guess the round subkey sequence
with less than a guess of the full Twofish key. The round subkey sequence is derived from Me and Mo, and
it is easy to see that every round subkey is dependent on the full value of both Me and Mo. However, S is
derived from Me and Mo in a way that ensures that knowledge of any two is sufficient to learn the third.
Thus, an attacker who has guessed S doesn’t know Me or Mo, but for each possible value of Me, he knows
what Mo will have to be.

2



The property does not allow any straightforward division of the key space. For example, it’s easy to see
that a meet-in-the-middle attack based on this property can’t work, since the attack requires guessing first
one part of the key, and then another based on the correctness of the guessed first part. A bit more analysis,
based on the specific way the RS code is used to derive S from Me, Mo, shows that the best an attacker can
do against Twofish-128 is to guess 15/16 bytes. This leaves him with one byte of uncertainty about each
round subkey, and two bytes of uncertainty about each of the two whitening keys. Note that this doesn’t
mean he knows the bytes; at best, he can know 4/8 bytes of each subkey, but he will also know that there
are only 256 possible values for any round subkey that are not already specified by his previous guesses.

3 Applying Key Separation to the Key-Dependent S-Boxes

The real relevance of key separation to Twofish involves the great importance of the S-box key, S. Each
of the three “halves” into which the Twofish key is broken (Me, Mo, S) radically affects every round. (For
example, a single byte change to Me or Mo is guaranteed to change every round subkey.) But S determines
the S-boxes, the basic nonlinear elements upon which the cipher is based. In [?, DGV94], the concept of
key-dependent differential and linear characteristics was introduced. It is known that the differential and
linear characteristics through the Twofish S-boxes are key-dependent; we have done considerable statistical
analysis of the S-boxes for all three key sizes to determine the average and worst-case differential and linear
properties of the S-boxes [SKW+98, SKW+99].
The use of key-dependent S-boxes raises one possibility for attack: Wait for users to choose keys with
especially weak S-boxes, and mount attacks based on these weak keys. The decision to use only half the key
material to define the S-boxes raises another possibility: First guess the S-box key, then attempt an attack
based on the guess. These two possibilities need to be addressed.

3.1 Weak S-box Keys

It is known that some S-box keys yield S-boxes with higher probability differential and linear characteristics
than others. It is known, for example, that the worst S-box for 192-bit Twofish keys (of all four S-boxes) had
one differential with probability 24/256, though the average was about 12/256. This leads to the question
of how weak the key can be; that is, what’s the best set of S-boxes available for an attacker? This question
must ultimately be answered in terms of the difficulty of distinguishing the cipher with this set of S-boxes
from a random permutation.
Suppose there is a single S value for 256-bit keys that allows an attack that distinguishes Twofish with
that S-box from a random permutation with only 128 basic operations and a few chosen plaintexts. This
allows an attack on Twofish-256 which works on 2−128 of all keys, and so gives a very small advantage over
brute-force search. However, the same advantage is available to an attacker who precomputes encryptions
for 2128 different keys; he is able to request a few chosen plaintexts, look up the results in a sorted list, and
quickly determine the key used, if it is in his list. The difference is only in terms of memory requirements;
a table of 2128 ciphertexts from the different keys requires larger storage than anything available on Earth.
(On the other hand, the precomputation also takes more resources than are currently available. It is unclear
which requirement will be the constraining factor on some attacker in the future.)
This places the importance of weak keys of this kind into context. Only a very large class of such weak
keys can threaten the security of a cipher in the context of normal use. However, such weak keys could raise
security problems in some hashing modes, for example. It is therefore worth briefly reviewing our current
knowledge about the range of S-boxes available.
In [SKW+98], we reported statistical tests run on our set of possible S-boxes. The worst known S-box had a
differential characteristic of 24/256, but there may be slightly worse S-boxes in the 256-bit key case; we were
unable to exhaustively search the set of S-boxes for these long keys. We also considered possible bytewise
difference patterns; the best difference patterns available required (as a rule) no fewer than six active S-boxes
per three rounds. If we imagine a distinguishing attack mounted against the full 16-round Twofish, we may
thus consider 30 active S-boxes to be a lower bound. (In fact, the real number is almost certainly much
higher in all cases.) Getting the S-box differences to connect involves an interaction of the MDS matrix,

3



PHT, and key addition; the probabilities for individual byte differences are quite low. If the best set of
four S-boxes were to all have differential characteristics with probability 30/256, the active S-boxes alone
would account for a probability for a 15-round characteristic of about 2−92. If the probability of getting
the required pattern of byte differences is around 2−10 for each three rounds, then we end up with a total
differential characteristic with probability about 2−132. If we also assume a 1/2 probability of getting the
right difference in each S-box (which basically means that each S-box’s best difference would have to have
a Hamming weight of one), the total differential characteristic would have probability of about 2−162. This
appears to be the best possible case for an attacker (and thus the worst for Twofish). Note that this isn’t a
truncated differential; to get the best differential probabilities for this set of S-boxes, we must specify actual
differences into the S-boxes. To get the output differences from those S-boxes to align through the MDS
matrix to be reused in the next round, we must again specify actual differences, rather than large classes of
differences.
Naturally, there are many possible properties that might raise problems with S-boxes, and there’s no way to
consider all of them. It is, therefore, useful to recall two lessons from analysis we’ve done on Twofish:

1. The use of MDS matrix multiplication spreads out any property among all the S-boxes fairly quickly.
Thus, it seems likely that an attacker must find interesting properties in all four S-boxes to find a real
attack.

2. The combination of operations in Twofish makes many simple attacks just fall apart. For example, the
one-bit rotations prevent attacks based on lining up byte-oriented differentials cleanly through many
rounds; the combination of addition and XOR operations in the F-function means that there are more
operations in the cipher that can’t be bypassed “for free”; e.g., without decreasing probabilities or
biases.

3.1.1 Using a Weak Key If Found

Consider a differential with probability 2−100 for Twofish-256 with the worst possible S key. An attacker
who wishes to distinguish Twofish from a random permutation using this differential expects to need about
2100 chosen plaintext pairs. The attack is expected to work 2−128 of the time. The attacker thus expects to
request about 2100×2128 = 2228 chosen plaintext pairs before he expects his first success. This is enormously
less efficient than simply doing the precomputation of the 2128 256-bit Twofish keys with S as their S-box
keys, storing the encryptions of the same four chosen plaintexts under each key in a sorted list, and retrieving
the key as described above. Thus, while such a weak key, if it existed, might be of some value in attacking
hashing modes, it would have no value in recovering encrypted messages.
In general, weak keys that are selected with reasonably low probability (e.g., less than 2−32) are not very
interesting in the normal use of ciphers.

3.1.2 Conclusions

Naturally, many other attacks are possible, and we cannot prove that there is not some unknown property,
for which, by immense bad luck, Twofish has an especially weak S key available. However, we note that
the diffusion properties of Twofish make any attack based on such a property likely to require it to occur
in all four key-dependent S-boxes. We also note that Twofish already mixes addition, XOR, and rotation
along with the S-boxes. Any property in the S-boxes must survive all three operations with some reasonable
probability to be worthwhile. We don’t expect such a property to exist; there appears to be no more reason
to expect such a property to exist for Twofish than for Serpent, RC6, MARS, or Rijndael.

3.2 Attacking Twofish by Guessing S

The use of key-dependent S-boxes in defining the g function means that attackers have essentially two choices:

1. Ignore nearly all specific properties of the g function in an attack.

4



2. Guess S before mounting the rest of the attack.

Without guessing S, an attacker must base his attack only upon the properties of the rest of the structure,
such as the use of the PHT to mix outputs of the two parallel g functions in each round, or the balanced
Feistel construction, or the general properties of the MDS matrix multiply step applied after the S-boxes in
the g function. Indeed, to backtrack past a single round, an attacker must guess S. We should thus expect
that attackers will start by guessing S, and then will mount their attacks based on that guess.
It is interesting to consider the mechanics of such an attack. There are three interesting constraints:

1. Once the attacker has guessed S, the rest of the attack must distinguish the full cipher from a random
permutation using less than 2k/2 work, where k is the key length in bits.

2. If some attack requires specific chosen plaintexts or ciphertexts for each different guess of S, then an
attacker must choose a different set of plaintexts or ciphertexts for each S value considered. This can
easily require the whole codebook to mount the attack for all possible S values, and will probably
require that the whole set of texts requested be stored.

3. The attack needs to actually work for most S values. If it works for only a tiny portion of the possible
S values, then it is properly considered as a class of weak keys, rather than as an attack on the cipher
as generally used.

Consider an attacker who tries to guess S, and then mount an attack based on his guess. To break Twofish,
the attacker must distinguish Twofish with this S-box from a random permutation with less work than is
required to brute-force search half the keyspace. And he must do this for reasonably common keys, rather
than waiting for the worst possible key to happen to be used. Thus, to attack Twofish-256, he must guess
128 bits, and then distinguish Twofish with these S-boxes from a random permutation in less than 2128 work.
Once again, let’s consider differential attacks. The average-case differential characteristic for Twofish S-boxes
is 12/256. If a distinguishing attack on Twofish requires 30 active S-boxes with probability 12/256 each,
the total differential characteristic probability is about 2−132 to get through the active S-boxes alone, and
so will take more than 2128 work or input pairs to detect. This ignores all the other requirements for such a
differential characteristic to exist, involving carry-bit propagation, byte difference patterns, etc.

3.2.1 How the Attack Would Be Mounted If It Worked

Suppose we have some property by which we can distinguish Twofish-256 from a random permutation, given
knowledge of the S-box key, with 2127 work and 270 chosen plaintexts determined by the S-box key. In this
case, an attack would require essentially the full plaintext/ciphertext mapping for the key being attacked,
to allow the right set of 2100 chosen plaintexts for each key. An attack of this kind, if it worked, would
give 2255 work to break Twofish-256. However, we know of no property by which 16-round Twofish can be
distinguished from a random permutation with less work then keysearch, even given the S-box key.

3.2.2 Conclusions

We have been unable to find a way to mount this class of attack successfully against Twofish. However, we
would very much like to see more research into this kind of attack. The important requirement to remember
is that the attacker, once he has guessed the S-box key (half the total entropy), must now mount an attack
on the cipher with less work than guessing the other half of the key. Alternatively, the attacker may guess
individual S-boxes, each defined by 1/8 of the total Twofish keyspace, and try to mount an attack on the
cipher requiring less work than searching the remaining keyspace.

4 Conclusions

In this note, we have discussed the key separation property of Twofish. We have discussed what this property
is, its existence in all block ciphers, and its specific relevance to Twofish. We have discussed the possibility

5



of weak S-box keys making an attack on Twofish possible, and shown some of our reasons for believing no
such weak S-box keys exist. We have also discussed the possibility of partial guessing attacks in which the
attacker guesses the S-box key first, then tailors an attack to the specific set of S-boxes he’s guessed. Again,
we have discussed some of our reasons for not believing that such an attack will work.
However, we want to encourage further investigation into the partial-guessing attacks described above. It
is our belief that, if an attack is to be found against Twofish, this kind of attack is the most likely place
to find it. We expect that any such attack will need to find some serious weakness in the rest of the
Twofish structure, or some property of the fixed S-boxes q0 and q1 that survives the process of generating
key-dependent S-boxes. We have no idea what such a property would look like, if it does exist.

5 Acknowledgements

The author wishes to thank Susan Langford, Sean Murphy, Bruce Schneier, and Doug Whiting for useful
conversations and comments.

References

[BB93] I. Ben-Aroya and E. Biham, “Differential Cryptanalysis of Lucifer,” Advances in Cryptology—
CRYPTO ’93 Proceedings, Springer-Verlag, 1994.

[DGV94] J. Daemen, R. Govaerts, J. Vanderwalle, “Weak Keys for IDEA,” Advances in Cryptology—
EUROCRYPT ’93 Proceedings, Springer-Verlag, 1994.

[Fer99] Niels Ferguson, “Impossible Differentials in Twofish,” Twofish Technical Report 5, Counterpane
Systems, October 1999. See http://www.counterpane.com/twofish.html.

[Mur00] Sean Murphy, “The Key Separation of Twofish,” available on NIST AES3 Web site, http:
//www.nist.gov/aes, April 2000.

[SKW+98] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson, “Twofish: A 128-bit
Block Cipher,” AES Round 1 Technical Evaluation CD-1: Documentation, National Institute of
Standards and Technology, Aug 1998.

[SKW+99] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson, The Twofish Encryption
Algorithm, A 128-Bit Block Cipher, John Wiley & Sons, 1999.

6


