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Abstract

In [SK+98] the Twofish block cipher was introduced, and initial estimates of an upper bounds on the
probability of a 12-round differential were given. These results used an imperfect model of Twofish. We
present an improved model, and show that any 12-round differential characteristic has a probability of
at most 2−102.8.
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1 Introduction

Twofish was introduced in [SK+98]. That report
contained an initial analysis of the feasibility of a dif-
ferential attack against the Twofish cipher. In this
paper we will investigate differential attacks against
Twofish further. We assume familiarity with both
Twofish and differential cryptanalysis.

The results of [SK+98] are not hard as the model
used to estimate the best differential is only an ap-
proximation of Twofish. We started a project to
investigate differential attacks against Twofish fur-
ther. This paper is a status report of our results to
date. We expect to continue this work and achieve
significant improvements over our current results.

The first choice we have to make in differential crypt-
analysis is what type of differences to use. Twofish
contains S-boxes, an MDS matrix multiply, addition
modulo 232, xors, and rotations. There are two
types of differences that we think could be useful:
a xor difference, and a difference mod 232. When
we use a xor difference we have to use approxima-

tions for the S-boxes and the additions modulo 232;
when we use a differences modulo 232 we have to
use approximations for the S-boxes, the MDS ma-
trix multiply, the xors, and the rotations.

The xor and addition operations are fairly closely
related, and either operation can be approximated
with reasonable success in the group of the other
operation. In the comparison we will ignore the S-
boxes; we assume they are equally hard to approxi-
mate in each of the groups. A xor differential has
to approximate 2 addition operations in each round.
A additive differential has to approximate the MDS
matrix, a single xor, and a rotation. We estimate
that it is about as difficult to approximate an addi-
tion for a xor differential as it is to approximate a
xor for an additive differential. The rotation seems
to be somewhat easier to approximate for an ad-
ditive differential than a xor operation. So if we
ignore the MDS matrix, it would seem that additive
differentials are more attractive.

For our analysis, the MDS matrix multiply is best
written as a linear function: each output bit is the
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xor of several input bits. This is very easy from the
point of view of a xor difference; no approximation
is necessary and any given input difference leads to
precisely one output difference. For an additive dif-
ference this is much harder. There do not seem to be
any good approximations of the MDS matrix for an
additive difference. Therefore, we estimate that xor

based differentials are much more effective than ad-
ditive differentials. In the rest of this paper we will
only look at xor based differentials.

1.1 Notation

We use the definitions and symbols of the Twofish
report [SK+98]. Let B be the set of all possible byte
values. Let G be the F -function without the key-
dependent S-boxes. Thus G consists of two MDS
matrix multiplies, the PHT, and the subkey addi-
tion.

2 Differentials of the S-boxes

In this section we look at differential characteristics
of the S-boxes. Each S-box consists of a sequence of
q-mappings and xors with a key byte. For q0 and
q1 the probability of each differential can easily be
computed by trying all possible pairs of inputs.

We define pi(a, b) to be the probability that qi has
an output difference of b, given an input difference
of a. In other words:

pi(a, b) := Pr
x∈B

[qi(x⊕ a) = qi(x)⊕ b] i = 0, 1

We now look at the first two stages of an S-box. This
consists of a q-mapping, followed by a xor with a
key byte, followed by another q-mapping. As usual,
we assume uniform random distributions of the in-
put values and the key bytes. We define pij(a, b)
to be the probability that this construction gives an
output difference b given an input difference a, where
i is the number of the first q-mapping, and j is the
number of the second q-mapping. It is easy to see
that

pij(a, b) =
∑
d∈B

pi(a, d)pj(d, b) (1)

for i, j ∈ {0, 1}, and we can extend this definition
to arbitrary long chains of q-mappings and key-byte
xors. In general it holds that

pij...m(a, b) =
∑
d∈B

pi(a, d)pj...m(d, b)

for i, j, . . . ,m ∈ {0, 1}. This allows us to compute
the exact probabilities for each of the S-boxes in
Twofish. Table 1 gives the probabilities of the best
differential of each of the S-boxes for each of the
key length. From this point of view the S-boxes
are very good; there are no high-probability differen-
tials. (Note that the average differential probability
is 1/255 = 1.0039 · 2−8 as we know that the S-boxes
are permutations and thus the output differential 0
does not occur in non-trivial cases. The best differ-
ential probability must be at least as large as the
average. )

Note that the numbers in this table hold only when
the key bytes are chosen at random. If we try a
differential many times, each time with random in-
put and key byte values then we expect to get the
numbers in the table. However, for any particular
set of key bytes there are differentials with a much
higher probability (as shown in [SK+98]). Our com-
putations are no longer valid because for any fixed
key byte, the differential probabilities of pi and pj in
equation 1 are no longer independent of each other.

Twofish uses the same S-boxes in each round. When
analysing a multi-round differential characteristic
the differential probabilities of each of the round
functions are not independent either. This makes
the analysis of the probability of a differential char-
acteristic more difficult.

3 Differentials of F

The function F takes a 64-bit input and produces a
64-bit output. Thus there are a total of about 2128

possible differentials. It is clearly not possible to
compute or list all of them. To alleviate this prob-
lem we will group the differentials in sets, and for
every set compute upper bounds on the probability
of the differentials in that set.

We split the 2128 different differential patterns into a
number of subsets. The input difference is classified
by the set of input-bytes that are non-zero. There
are 256 different classifications of input differences.
The output difference too are classified by the set of
output-bytes that are non-zero. We group differen-
tials with the same input and output classification
in the same set. There are therefore 216 different
sets of differentials, each containing between 1 and
25516 elements.

We will construct differentials of F in two steps.
First we use a differential approximation of the S-
boxes, and then we use an approximation of the dif-
ferentials of G.
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128-bit key 192-bit key 256-bit key
Sbox 0 1.0649 · 2−8 1.0084 · 2−8 1.0043 · 2−8

Sbox 1 1.0566 · 2−8 1.0087 · 2−8 1.0043 · 2−8

Sbox 2 1.0533 · 2−8 1.0097 · 2−8 1.0045 · 2−8

Sbox 3 1.0538 · 2−8 1.0088 · 2−8 1.0044 · 2−8

Table 1: Best differential probabilities of the S-boxes

3.1 Differentials of G

The MDS matrix multiply is purely linear, and thus
creates no problem for our differential. The PHT
and key addition use addition modulo 232 as basic
operation. This makes the differentials non-trivial.
A theoretical analysis of differential probabilities is
difficult as the probabilities at the result are not in-
dependent of each other. We therefore chose to use
numerical simulation to establish bounds on the dif-
ferential probability.

We are trying to derive an upper bound on differ-
ential probabilities. Therefore, we are interested in
finding good bounds for the most likely differentials
of G. In [SK+98] it is shown that for any 128-bit
key, the best differential probability of an S-box is
18/256. If we look only at the S-boxes, then the
most likely differentials occur when there are a low
number of active S-boxes. The most important task
is thus to find good bounds on the differential char-
acteristics of G for differentials with a low number
of active S-boxes.

We performed numerical simulations of differentials
of G. Given an input difference, we generated n
random input pairs with that difference and applied
the G function (using random keys). We collected
the output differences and counted how often each of
them appeared. Due to limited resources we could
only do this analysis for moderately large n.

From this data we would like to derive (a bound on)
the differential probability. Let us assume a specific
differential occurs k times out of n tries. It is obvi-
ously not a good idea to use k/n as a bound on the
differential probability. Most possible differences oc-
cur 0 times, but we should not assume that they have
a 0 probability. If we knew the distribution of the
probability we could give some meaningful bound,
for example saying that the probability is less than
x with a confidence level of 1 %. However, in our
case we do not know the distribution of the differ-
ential probabilities, and it would be dangerous to
assume one. We can, however, reverse the process.

Let us assume that a specific differential has a prob-
ability p. If we try the input difference n times, we

expect to find this differential around p · n times.
The number of times this differential is actually ob-
served is binomially distributed. Let X be a stochas-
tic variable that represents the number of times the
differential is observed. We have

Pr(X = k) =
(
n

k

)
(1− p)n−kpk k = 0, . . . , n

From this distribution we can derive a bound on the
lower tail of the binomial distribution [Fer98]:

Pr(X ≤ k) < Pr(X = k)
p(n− k + 1)

(p · n− k) + p

for k ≤ p · n. Given a probability p for the differ-
ential we can say that we have an unlikely event if
the differential occurs k times and Pr(X ≤ k) < γ
where γ would be a small number. This is a normal
test for statistical significance.
We use the following rule to derive a bound on a
differential that occurs k out of n times. We use a
probability p such that Pr(X ≤ k) < γ for some
global parameter γ (typical values for γ are 0.05 or
0.01). Of course, we try to choose p as low as pos-
sible given this condition. This will overestimate p
for most differentials, but underestimate the actual
p in a few cases.
We ran these simulations for all input differences
with a low enough number of active S-boxes. For ev-
ery differential that we tried we estimated the prob-
ability using this rule. For each set of differentials
with the same input and output characterisation we
computed the maximum estimated probability. For
each differential there is a small chance that we un-
derestimates the probability. However, it is far less
likely that we underestimates the maximum proba-
bility of a set of differentials. For our maximum to be
too low we have to underestimated the probability
of the most likely differential. This by itself is rather
unlikely. Not only that, we cannot significantly over-
estimate the probability of any differential with a
probability close to the most likely differential. We
therefore feel confident that these approximations
are reasonable, and that they most likely will result
in our overestimating the actual differential proba-
bility quite significantly.
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For differentials with too many active S-boxes (for
which we did not run the simulations) we simply use
an upper bound of 1 on the probability of a differ-
ential of G.

To improve efficiency we generate our input differ-
ences using a straightforward structure. This im-
proves our performance and allows us to increase
the number of samples that we make. However, the
differentials that we try are no longer independent of
each other. We have observed that the use of struc-
tures significantly increases the peaks in the bounds.
The smaller the structures that we use, the lower the
maximum probability bound tends to be. Therefore,
we try to reduce the use of structures. We hope our
next software version will allow us to eliminate struc-
tures altogether.

Apart from these numerical results, we know that
certain differential patterns cannot occur. For ex-
ample, if the input difference is restricted to the first
input word of the G, then the output difference must
have active bits in both output words. Similarly, if
the input difference is restricted to the second in-
put word of G, then the output difference must have
active bits in both halves, except when the output
of the MDS matrix has a difference of 0x80000000.
In this special case, we know that all four S-boxes
in this half must be active (otherwise more than 1
byte in the output of the MDS matrix must change).
Our software generates all these impossible differen-
tial patterns and sets the differential probabilities of
the associated sets to zero.

3.2 Differentials of F

Given the results from the last section we can now
create a table of upper bounds on the differential
probabilities of differentials of F . For each set of
differentials we know how many active S-boxes there
are. Let σ be the maximum probability of a differen-
tial of an S-box. We can now bound the probability
of each set of differentials by multiplying the bounds
that we found in the previous section on the set by
the proper power of σ.

The value σ can be set in various ways. We know
that most S-boxes have a best differential probability
of 12/256. For the time being we will use this value
for σ. Other values, especially larger ones, will be
discussed later.

4 Differentials of the round
function

Once we have derived bounds on the differentials
of F we can do the same for the round function.
The differential pattern at the start of the round is
characterised by 16 bits, each bit indicates whether
the differential pattern in the corresponding byte is
nonzero. Given the characterisation of the differ-
ential pattern at the input of the round, we know
exactly which S-boxes are active. We can generate
a list of all suitable differential patterns of F with
their associated probability bound. Each of these
differentials is combined with the other half of the in-
put differential using the rotate and xor operations.
Each choice of F differential set leads to several pos-
sible output differential patterns as the rotate and
xors can lead to different output characterisations
depending on the exact differential.

For example, let us look at a differential pattern of
0110 in a 32-bit word. This pattern indicates that
only the middle two bytes of the 4-byte word con-
tain active differential bits. After a left rotation, the
possible output differential patterns are: 0100, 0110,
1010, 1100, and 1110. xoring two differential pat-
terns can similarly lead to a list of possible results.
If we xor two words, one with a differential pattern
of 0101 and one with a differential pattern of 0011,
then the possible result patterns are 0110 and 0111.

For each input differential pattern, we can go
through all possible F differential patterns, and gen-
erate all possible output patterns that can arise. For
each possible output pattern we keep track of the
largest upper bound that we generate this way. This
produces an upper bound for each of the 232 possi-
ble input/output differential patterns of the round
function.

5 Multi-round patterns

The simplest way of generating multi-round patterns
would be to use the list of 232 possible round pat-
terns and a standard search algorithm. We use an
algorithm that is somewhat more efficient than that.
There are 216 possible differential patterns after r
rounds, as each of the 16 data bytes can have a zero
or nonzero difference. For each of the 216 possible
patterns we store an upper bound on the probability
of any characteristic that has this difference pattern
after r rounds. Furthermore, we store the list of dif-
ferential patterns of F , and a precomputed table of
how the rotates and xors can propagate patterns.
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For each difference pattern after r+1 rounds we use
this data to compute an upper bound on the prob-
ability of a differential characteristic that has this
pattern after r + 1 rounds.

Given the output pattern of the round in question,
we know the first half of the input pattern. This
leaves us with 256 possible differential input pat-
terns, and 256 possible differential patterns of F .
Each of the 216 possible combinations is tried to see
whether it can yield the required output differential
pattern. The process can be speeded up by travers-
ing either the F output patterns or the input pat-
terns in decreasing order of probability and using
some simple cut-off logic.

6 Results

The results depend on the parameters used to es-
timate the differential probabilities of G, and the
values of γ and σ.

Our current results use n = 211 tries for all differ-
entials with 1 active S-box, and n = 28 tries for all
differentials with 2 active S-boxes. The structure
size is 8 and 16 respectively. We use γ = 0.05, and
σ = 12/256. The full Twofish cipher has 16 rounds.
We assume that an adversary can somehow bypass
the first round, and can mount a 3R-attack. We thus
look at the best 12-round differential characteristic.

With these parameters we found an upper bound
on a 12-round differential characteristic of 2−102.8.
This puts a differential attack against Twofish well
outside the practical realm.

This upper bound is pessimistic in the following ar-
eas:

• The best differential pattern used 3 active S-
boxes in 4 of the 12 rounds. The probability
of passing a differential with 3 active S-boxes
through G is currently taken to be 1. This is
clearly overly optimistic, especially since the
differential pattern used has both a low input
and a low output weight. We believe that ex-
tending our simulations to all differentials with
3 active S-boxes will yield a significant further
reduction in probability.

• Many of the rounds in the best differential pat-
tern use fancy transformations of the difference
pattern by the rotations. This is to be ex-
pected of our algorithm, but any non-trivial
transformation poses serious restrictions on
the actual difference patterns of that word.

This makes it much less likely that our up-
per bound can actually be approached by an
actual differential.

• Our estimates are based on the maximum
probability of groups of differentials. It is not
clear at all that there exists a differential that
has a probability that even approaches our up-
per bound.

7 Other problems for the at-
tacker

To create an attack, the attacker has to choose a
specific differential characteristic. That character-
istic uses certain specific differences of each of the
S-boxes. To get anywhere near the bound all of
these differences need to have a probability close to
our σ. We chose σ equal to the probability of the
best differential of most S-boxes. However, a spe-
cific differential will not have the same probability
under all keys. If the S-box keys are not known, the
attacker has two options. First, he can guess the
S-box key bits, and construct a differential charac-
teristic based on that assumption. To achieve good
differential probabilities in enough S-boxes, he will
have to guess the keys of at least 2 S-boxes (between
32 and 64 bits depending on the key size). Alterna-
tively he can try to find a differential that works for
all keys. As we saw in section 2 this leads to very
low differential probabilities.

8 Best S-box differential

We use σ = 12/256 while we know that there are
keys for which the best S-box differential has prob-
ability 18/256 for a 128-bit key, and even higher for
larger key sizes. However, those higher probabilities
only occur for a small subset of the keys. We need to
address the question how much we are willing to pay
in the size of the keyspace the attack is effective on
to get a higher probability. If we have an attack that
works for 2−28 of the key space, how much more effi-
cient should the attack be before it is a better choice
for the attacker?
The most natural way is to look at the expected
work for the attacker before recovering a single key.
We assume that there are enough keys to attack,
and optimise the attacker’s strategy to find any one
key with the least amount of work. This is a reason-
able way of looking at the attacker’s problem. After
all, we know there is an attack that is effective on a
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subset of 2−64 of the keys with 264 work: a simple
exhaustive search of the any subset of that size will
do. With such an brute-force attack on a subset of
the keys, the expected amount of work before a key
is found remains the same.

Let us now look at our Twofish differentials. Sup-
pose we want to use a differential of S-box 0 with
probability 14/256; this is possible for about 1 in 8
of all possible keys. We have restricted ourselves to
1/8th of the set of keys, so the workload of our at-
tack should be reduced by at least a factor of 8 for
this to be worthwhile. We ran our search for the best
differential characteristic pattern again where S-box
0 had a best differential probability of 14/256. The
resulting differential probability was 4.6 times higher
than the result with σ = 12/256. Is this worth it?

Let us assume a differential has a probability that
depends on the key. We have a list of (pi, ki) where
the probability of the differential is at most pi for a
fraction ki of all keys. The expected workload of the
attacker to get a single right pair is 1/pi for a fraction
ki of the key space, and thus σki/pi when taken over
all keys. The workload is at least max ki/pi. This
corresponds to the workload of an attack with a dif-
ferential with probability min pi/ki. In our situation
the minimum occurs when we use the S-box approx-
imation with probability 12/256. (Using the figures
from table 3 in [SK+98], we find that pi/ki reaches
its minimum at pi = 12/256.) As we currently ig-
nore the 1/ki term, the actual ‘effective’ probability
of a real differential is lower than the bound that we
have derived.

We conclude that using a higher probability than
12/256 for an S-box approximation is not worth the
loss in key space on which the approximation holds.
Thus the bounds we presented earlier hold, and are
in fact pessimistic.

9 Other variants

As an experiment we ran the same analysis for
Twofish with the 1-bit rotations removed. This
makes our approximations match the behaviour of
the differential much better. Our results give an
upper bound on the probability of a 12-round differ-
ential characteristic of 2−104.1.

This bound is not much better than we have for
full Twofish. However, the sequence of differential
patterns that achieves this bound uses far more ap-
proximations of F that have 3 active S-boxes. In
all cases it uses differential characteristics of G that

have 3 active input bytes and only a few active out-
put bytes. In practice, such differentials of G will
have a far lower probability that the upper bound of
1 that we currently use. Therefore, we expect that
our bound can be improved to beyond 2−128.

We have no reason to believe that the 1-bit rota-
tions make Twofish stronger against a differential
attack. They were conceived to break up the byte-
level structure, but they do not require a separate
approximation or increase the avalanche effect of the
cipher. We think it is unlikely that the full Twofish
has a differential characteristic that is significantly
more likely than the version without rotations.

10 Further work

We will continue our analysis work to improve the
bound and our understanding of the intricacies of
Twofish. We have several areas that we plan to im-
prove.

10.1 Improved G differential esti-
mates

An obvious way to improve our overall bound is to
improve our bounds on the differentials of G. We
hope to be able to do this in the near future. A
larger sample-size will improve the accuracy of our
estimates. Extending our computations to differen-
tials of G with 3 active S-boxes should give a great
improvement.

10.2 More accurate patterns

Our current pattern-representation is somewhat
coarse. We group differentials only by which bytes
contain active bits. Apart from the first and final
round, all internal differential patterns in our best
result have at most 4 active bytes (out of 16). A
more fine-grained grouping of the differentials could
lead to a better upper bound.

For example, there are only a few G differences with
1 active input byte that have a relatively high prob-
ability. Instead of grouping these into the sets, we
could treat them separately. This would ensure that
our algorithm doesn’t magically transform the out-
put of the high-probability difference pattern to one
with fewer active bytes by the rotation. The char-
acterisation could be extended with special cases for
differences that have only a few active nibbles. We
expect that this will result in more S-boxes being
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needed for a full differential characteristic, and thus
a lower bound.

10.3 Improved treatment of S-box
differentials

There is still room to improve our approximations of
the S-boxes. We can, for example, compute the best
differential approximation for each of the output dif-
ferences separately. This can then be combined with
the analysis of G to get a better bound on differen-
tials of F .
The data on the best S-box differentials in [SK+98]
is merged for all the S-boxes. We plan to test the
differentials again and collect information for each
S-box separately.
We will also improve our handling of the variation
of differential probability over the key-space. This
will also result in a better bound.

10.4 Additive differentials

We would like to take a closer look at additive dif-
ferentials modulo 232. Although we do not expect
these to be more useful, it would be nice to derive
some bound in that case too.

11 Conclusion

For practical purposes, Twofish is immune to dif-
ferential cryptanalysis. We have shown that any
12-round differential has a probability of at most
2−102.8. This bound is far from hard, and we ex-
pect that any real differential has a much smaller
probability.
The Twofish structure is not easy to analyse. The
mixing of various operations makes it hard to give
a clean analysis and forces us to use approximation

techniques. Some aspects, such as the rotates, make
the analysis a lot harder and forces us to use less
accurate approximations, while there is no a priori
reason to assume that the rotations would have any
significant influence on the differential probabilities.

One can argue whether a cipher with a structure
that is easier to analyse would be preferable. On
the one hand, a structure that allows easier analysis
makes it easier to rule out certain attacks. On the
other hand, the very structure that makes it easy to
analyse might be used in a future attack. Although
differential attacks were obviously considered during
the design, Twofish was not specifically strengthened
against differential attacks, or designed to allow a
simple upper bound on differential probabilities to
be derived. This is a result of the design philosophy
of Twofish. It was not optimised specifically against
known attacks; it is a conservative design that tries
to resist both known and unknown attacks.
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