
Remote Auditing of Software Outputs Using a
Trusted Coprocessor

Bruce Schneier John Kelsey

Counterpane Systems, 101 E Minnehaha Parkway, Minneapolis, MN 55419
{schneier,kelsey}@counterpane.com

Abstract

A cryptographic coprocessor is described for certifying outcomes of software pro-
grams. The system for certifying and authenticating outputs allows a third party
who trusts the secure components of the system to verify that a specified program
actually executed and produced a claimed output.

keywords. Key words: Authentication, digital signatures, secure coprocessor,
smart cards

1 Introduction

We present an application of digital signatures [2]. Through a cryptographic
coprocessor [4,13,11] — here called an “Authenticator” — software can certify
particular outputs. Software can use this capability to allow the Authenticator
to certify that some specified outputs or outcomes of the software have actually
been achieved. These protocols can be implemented on a variety of hardware
designs using any of several digital signature algorithms: RSA [9], ElGamal
[3], DSA [8], etc.
Normally, if a person claims that he has performed some task or achieved some
result with a software program it can be difficult to verify that this actually
occurred. The output itself may be displayed (printed or photographed), but
this is not always reliable evidence of the process that was followed to pro-
duce that result. Our Authenticator can produce a digitally signed statement
which securely and reliably attests to the actual process of the program. The
Authenticator has access to the internal operation of the software (as will
be described in detail), and its ability to produce secure and untamperable
output allows this authentication functionality.
An application of this capability would be the certification of a high score in
some game software. Perhaps the manufacturer wishes to set up a promotion

Preprint submitted to Elsevier Preprint 1 November 1999



where prizes are offered to people who complete a game or achieve a specified
high score. Such promotions are difficult to offer at present due to the difficulty
of fairly verifying claims of success. The Software Authenticator would allow
those players who have actually met the goals to certify their results and
win the prize, while preventing cheaters from sending in doctored output or
copying output from true winners and claiming it as their own.
The same system has another, independent, capability: software metering.
The Authenticator can be used to check aspects of a program’s functioning
related to the amount of time spent or number of uses. As with an electric
meter, the Authenticator records information about how much the software
has been used, in a form which the end user cannot tamper with. At some
regular interval (probably every month) the Authenticator is read by a remote
connection to a central computing service. The central computer then bills the
user for his actual usage of the software during the month just as with other
utilities. Several variations on this general scheme will be described using the
same overall system configuration.

2 System Configuration

There are three main hardware components to the authentication system: the
Computer, the Authenticator, and the Data Source. Generally, these will be
connected in one of the following two configurations:

Authenticator ←→ Computer ←→ Data Source
Computer ←→ Authenticator ←→ Data Source

The Computer is the main computing unit owned by the end user, which runs
the main part of the software programs he uses. It may be a general purpose
computer such as a PC, or it may be more specialized, such as a dedicated
game playing unit or TV-based computer entertainment system. It will have
some input and output capabilities, typically including a video/sound display
and possibly a printer for output, with input ranging from simple joystick
systems to full keyboard and/or video capability. The Computer will include
RAM and usually ROM memory, and may also have non-volatile memory such
as a disk drive or Flash RAM. For most applications the Computer must have
a modem or other network connection to allow it to communicate with the
Central Computer.
The Authenticator is a small piece of hardware enclosed in a tamper-resistant
casing which includes CPU and memory. The Authenticator is a computer
in itself, but generally a less powerful one than the main Computer in the
system. It will have much less RAM and its CPU will probably be less power-
ful. The Authenticator must include some non-volatile memory as described
above, some RAM, and some ROM which holds the program which imple-
ments its basic functionality. The non-volatile RAM of the Authenticator will
hold the cryptographic keys used for communication and authentication. The

2



Authenticator will also require a hardware random-number source to be used
for initializing keys.
This paper assumes that a software program can be divided into two components–
one running on the Authenticator and the other running on the Computer–
such that the Authenticator can determine the output of the entire software
program.
The Data Source represents the place from which software programs which
will be run on the metering system come. Depending on the configuration,
this may be a local disk drive or CD-ROM, a game cartridge, or a remote
computer connected by telephone line or computer network connection.
One system component which is not shown in the diagrams above is the cen-
tralized computer system which communicates with the Authenticator (possi-
bly via the Computer). This server will be referred to as the Central Computer
(or CC). A communications link must exist for the Authenticator to talk to the
Central Computer at regular intervals in order to transmit authenticated out-
put information. In many ways this is similar to Chaum’s electronic database
with an “observer” chip [1].
As shown in the diagrams above, software programs flow from the Data Source
into the Computer/Authenticator system. This flow is essentially one direc-
tional, although in some circumstances (such as if the Data Source is a disk
drive or a computer on the Internet) data may flow in the opposite direction
during program execution or at other times. (Another example of this model
is a satellite-to-PC system: lots of continuous bandwidth down, and a small
trickle up via a dial-up line.) But for the unique features of the metering
and authentication system, the Data Source can be thought of as a read-only
source of programs to execute.
In addition, the diagrams both show a two-way link between Authenticator
and Computer. This link is active during most phases of the protocol, and al-
though the amount of data to be sent across the link is normally not large, it
is necessary during software execution that the link latency (the time needed
to get a short message across) is small. The Computer and the Authenticator
work in close cooperation during program execution and so their communica-
tion must not introduce noticeable delays.
In the protocol descriptions and other discussion below, the Authenticator
will be referred to as though it is capable of performing actions which only the
Computer can do, such as accessing the Data Source in the first diagram above,
or storing data in the Computer’s non-volatile memory. It is understood that
in such situations it is actually a cooperation between the Computer and the
Authenticator which occurs, with the Computer performing these functions
at the request of the Authenticator.
The two diagrams differ in whether the Data Source connects to the com-
puter directly, as shown in the first diagram, or whether it connects via the
intermediary of the Authenticator, as shown in the second. Example configu-

3



rations for the first case might include a general-purpose computer, with the
Authenticator in the form of a smart card, PCMCIA card (now called a PC
Card), parallel- or serial-port dongle, or internal expansion card. A dedicated
videogame machine, like a Sega Saturn, which had an expansion port or slot
where the Authenticator could plug in would also fit this configuration.
Examples of the second configuration would include systems where the Au-
thenticator is built into a special device to access the Data Source. For ex-
ample, the Authenticator could be built into a custom CD-ROM drive which
would then be able to use special CD’s customized for the metering and au-
thentication system. Alternatively, the Data Source could be a remote com-
puter reached via the Internet or some other computer network, and the Au-
thenticator would be built into a special modem used to access the data.
Another example of this configuration would build the Authenticator into a
pass-through box, like a Game Genie, which would plug into a cartridge slot
on a game machine and allow cartridges to plug into the Authenticator and
be the Data Source.
The functional differences between the two configurations shown are not sig-
nificant. The choice will usually be dictated by other considerations in terms
of the expansion capabilities of the system as to where the best place is to
attach the Authenticator. If all else is equal, there may be some small advan-
tage to the second configuration, where the Data Source passes through the
Authenticator en route to the Computer. One option for the use of the system
is for the Data Source to store the whole software program in encrypted form,
both the secure part which will run on the Authenticator and the insecure
part which will run on the computer. If this option is used, then passing the
data through the Authenticator will allow it to be conveniently decrypted as
it is loaded into the memory of the Computer. With the other configuration
this is still possible, but the data would have to be transferred from the Com-
puter to the Authenticator and back in order to be decrypted, requiring more
data transfers and so taking more time to load the program into memory. As
will be discussed below, the security increase provided by this option is only
marginal so it would not normally be the determining factor in selecting which
configuration option to use.

3 Applications

Certifying High Scores: One application of the output authentication system
is high score verification in the context of a dedicated game system, or en-
tertainment software on a general purpose computer. This could be used as
part of a contest, or continual high score rankings could be maintained and
people could gain bragging rights by seeing how they ranked against other
players around the world. This could open up possibilities where some of the
characteristics of online games, specifically the element of competition against

4



other players, would be available in the context of home game systems. Ac-
tion, strategy, and puzzle games could all be made more fun and exciting if
successful players could demonstrate their achievements publicly.
Metering: If the authenticated output were how long an application was run-
ning or how much data an application displayed or processed, then the sys-
tem can be used as a software meter [12]. This could be used as a “pay-
for-play” arcade system for home video game machines, a “pay-for-use” or
“pay-for-feature” system for personal computers, or a “pay-per-page” system
for database programs. The meter could be installed on the much-hyped In-
ternet terminal, allowing users to pay only for the time they use the machine;
enhancements could even allow metering of World Wide Web pages.
Distributed Key Search: Another possible application of output certification
could arise in the context of distributed computing. Several research groups
are working on systems to harness the massive collective computational power
of the Internet and apply it to hard problems. One example which has already
had some success is in factoring large numbers. Another area which has been
explored is exhaustive search for cryptographic keys. If these research systems
could be commercialized so that people were paid for letting their computers
be used for problems like these, it could make available a huge new source of
computer cycles. But one problem with these ideas is the issue of verifying that
each participant actually performed the computational work he had agreed to.
Some kinds of applications are self-checking, such as graphics rendering, but
others, such as the key search or factoring examples, may legitimately end up
with no successful outputs. In those cases a user could cheat by simultaneously
allocating his computers to multiple projects and report no results to all of
them, collecting more pay than he is entitled to. The authenticated output
system can fix this problem, by making sure that even if the output is null, that
that is the legitimate result of running the software. People would be required
to present authenticated output from their program runs if they expect to
get paid for their compute cycles. This technology can reduce cheating and
thereby bring the whole approach closer to economic feasibility.

4 System Overview

4.1 Signature and Trust Issues

One issue relating to any form of authenticated output is what the trust
relationships are between the Authenticator and those who view the output.
In our system, the output is authenticated by the Authenticator. This means
that those who trust the Authenticator and are in a position to verify its
signatures are the ones who will be able to trust and accept the authentication.
This will include most particularly the Central Computer, who shares a key
with the Authenticator and who, if symmetric cryptography is used for the

5



authentication, is the only entity (other than the Authenticator itself) that
can verify the signatures.
In some applications the authenticated output needs to be verified by other
parties. The CC and its affiliated organizations can verify that data is accu-
rately certified by an Authenticator which is part of the authentication system,
and then provide additional public-key signatures on that data. This second-
order certification can use a widely known and respected public key and is
suitable for wide distribution and acceptance.

4.2 Communications

Unlike software metering, output authentication can be designed to have very
modest data transmission requirements between the Authenticator and the
CC. This raises the possibility that it could be used even in a low-bandwidth
environment where no direct electronic link exists between the Authenticator
and the CC, but in which the information is displayed on the screen by the
Authenticator and the user manually transfers it to the CC, say by calling the
CC on the telephone and entering the data on his telephone keypad. Similarly
data could be returned from CC to Authenticator by alphanumeric data being
provided over the phone from the CC (via voice synthesis) and entered into
the Authenticator through the regular input device, and keyboard or even a
simple joystick interface.

4.3 Authenticator/Computer Interface

In order for the Authenticator to be in a position to authenticate the output of
the program, it must be able to know that the output actually did occur. This
means that the Authenticator must be intimately involved in the calculation of
the output, such that even if the part of the program running in the insecure
Computer is tampered with, the Authenticator is able to know whether a
given output actually occurred or not. This may require a larger fraction of
the program execution to occur on the Authenticator than in the case of the
metered software application.

5 Protocols

Protocols will be described for two basic cases, the first being an electronic
connection between the Authenticator and the Central Computer, and the
second being the simple case described above where all such communication is
via the human user of the system. This second system will be referred to as the
“low bandwidth” case, and probably consists of a human on the telephone,
entering characters read to him over the telephone into the computer, and
typing digits from the computer screen into the telephone.

6



1. Initialization of the Authenticator. This is used when the Authenticator
is first activated, to generate keys and communicate them to the CC. For
the low-bandwidth case it may be preferable to have the Authenticator’s
unique secret key calculated at the factory and programmed into its ROM
at manufacturing time, recorded in the CC’s database.

2. Adding a New Program. This protocol is used when the user has acquired
a new software program which requires information from the CC in order
to run. As with the metering application, some programs may be runnable
without any new information from the CC but others will require keying
information to be acquired. The low-bandwidth case will require the use of
programs which do not require interaction with the CC and so this protocol
will not be used in that case.

3. Starting Authenticated Software. This protocol involves the Authenticator,
Computer, and Data Source. It describes how these components interact at
the time an authenticated software program is loaded and execution begun.

4. Authenticate Output. This is the main protocol of the system, used when a
program produces some output which the user wants to have authenticated.

Each program is generally encrypted using a different key, unique to that
program. There are some advantages to using a single key to encrypt a large
number of programs, but there is some security risk in doing so, since that
key would be more valuable than others and if it were somehow exposed the
set of programs which use it would all become insecure. So it is expected that
in most cases programs will be encrypted using a unique key.
In order to begin running such a program, then, it will be necessary for the
metering system to acquire the key for that program. This will be done as
part of the “Adding a New Program” protocol.
In some cases the convenience of being able to run a program for the first
time without any interaction with the CC will be important. In that case
the Authenticator must already have a key for that program. This could be
handled by having all such programs be encrypted with the same key (or
possibly all programs from a given manufacturer encrypted with the same
key), and having the CC send that key to all Authenticators during their
initialization. At a slight cost in memory the system can be made somewhat
more secure by using several different keys for the programs, with the key
being chosen based on the Software ID (IDS), a unique ID associated with
each program (discussed in more detail below). In this way the keys will be
shared approximately equally across all such immediately-runnable programs,
reducing the value of each individual key of this type. In the low-bandwidth
implementation it is expected that all programs will be of this type due to the
difficulty of acquiring a key for each different program without an electronic
connection to the CC.
In the resulting system all programs are of one of two types. They can be
immediately-runnable, and hence encrypted using one of the shared keys; or
they can requiring interaction with CC before first run, in which case the

7



program is encrypted with a unique key.

5.1 Data Structures

There are many important pieces of data associated with the Authenticator.
Authenticator Keys: The Authenticator requires several keys in order to per-
form its varied functions, including communicating securely with the Central
Computer. Keys are of three types: “secret” keys are those used with conven-
tional cryptosystems such as DES [7]; “private” and “public” keys are those
used with public key cryptosystems such as RSA [9].

1. Authenticator’s Secret Key (SKA): Also known to CC. This key is used
for secret and authenticated communication between the CC and the Au-
thenticator, possibly via the Computer and/or an insecure communications
link. SKA is normally generated by the Authenticator during the initial-
ization phase, and is then transmitted to the CC in a message secured by
PKCC . Alternatively it may be programmed into the Authenticator’s ROM
at manufacturing time, and recorded into the CC’s database at that time.
This will be necessary for the low-bandwidth authentication application.

2. PKCC : Central Computer’s public key, known to Authenticator. This key
is used for initial communications between the Authenticator and the CC
before SKA is created. It is burned into ROM at manufacturing time.

3. SKIR: Secret key for immediately-runnable programs. As described above,
it may be desirable to support a class of programs which can be run immedi-
ately upon acquisition, without running the Adding a New Program proto-
col. (This is especially necessary for the low-bandwidth case.) For this to be
possible the Authenticator must already store the key for such a program.
All such programs share a special IDS, and the Authenticator will recognize
that ID and use the SKIR key to decrypt the program, as described in the
Using Authenticated Software protocol. As mentioned above, a variation on
this idea would define several IDS’s of the immediately-runnable class, each
of which would be associated with a different SKIR key.

4. IDA: An identification number unique to each Authenticator, burned into
ROM at manufacturing time

5. Table[Software,Key]: This table has a list of IDS and (Software,Key)
pairs. Each pair contains the key which will be needed to decrypt the en-
crypted portions of the software with the specified IDS.

There are also data structures associated with each piece of metered software
that comes from the Data Source. Each piece of authenticatable software from
the Data Source is divided into three parts. The Software Control Block has
information about the software which identifies it. The executable software
itself occupies the two remaining parts. Part of the software is designed to run
securely on the Authenticator, while part is designed to run in the insecure
environment of the Computer.

8



1. Software Control Block: The Software Control Block has information about
the software which will be used by the metering system to run it. The SCB
is signed by the private key of the CC, and the Authenticator checks the
signature when the software is loaded. SCB fields include the IDS: This is
a unique number identifying this piece of meterable software. Every piece
of software and every revision of a software item have unique IDS’s. As
discussed in the context of the metering application, there are two general
kinds of IDS’s, “program” and “component,” distinguishable by their high
order bits. Program IDS’s are used to refer to programs as a whole, while
Component IDS’s refer to specific features of a program. Only Program
IDS’s are necessary for the authentication application.

2. Insecure Software Component: The Insecure Software Component is the
bulk of the software program and runs on the Computer. It may be stored in
encrypted form in the Data Source, in which case the Authenticator will be
responsible for decrypting it at the time the program is loaded into memory.
If this decryption step will add unacceptable delay to program loading,
this insecure component can be stored unencrypted at only a slight loss
of security. Since the memory of the Computer is insecure by definition, a
determined attacker can gain access to the plaintext of the Insecure Software
Component in any case. So the additional security added by storing it in
secure form is limited in value.

3. Secure Software Component: The Secure Software Component runs on the
Authenticator itself. It is stored in encrypted form in the Data Source and
must be decrypted by the Authenticator as the program is loaded into mem-
ory. As will be described below, the Secure Software Component contains
software which implements selected but crucial functionality on which the
larger body of software in the Insecure Software Component depends. The
encryption of the Secure Software Component is the primary feature by
which the overall security of the system is maintained. It prevents attack-
ers from replacing this component with software which will authenticate
outputs which did not occur.

5.2 Encryption of messages

Where electronic communication is used, all messages between the CC and the
Authenticator are encrypted and authenticated. Either public-key or symmet-
ric encryption can be used, although symmetric encryption appears to provide
sufficient security for most of the protocols. The encryption used is assumed
to be a strong, modern cipher with key sizes in the range of 64 to 128 bits.
Examples include IDEA [6], or Blowfish [10]. Public key encryption would
most commonly use RSA [9].
Once initialization is complete, CC and Authenticator share SKA, which can
be used with a conventional encryption system to provide for both encryption
and authentication. Because the Authenticator has limited access to sources

9



of entropy, and because the total volume of data to be communicated be-
tween Authenticator and CC is small, a few hundred bytes per month in
typical usage, using SKA as the key for all communications between the two
systems should provide adequate security for this application. In this config-
uration, messages from the Authenticator are preceded by sending IDA (a
unique identifier specific to the Authenticator and burned into its ROM at
manufacturing time) in the clear, allowing the CC to lookup the encryption
key used, followed by the message itself encrypted with SKA. Responses from
CC are sent encrypted with SKA.
All communications between CC and Authenticator are initiated by the Au-
thenticator, with the CC acting as a server. As described above, it is expected
that the user will actually initiate such communications rather than having the
Authenticator spontaneously issue requests. Messages sent by the Authentica-
tor will include a sequence number which will increment each time a message
is sent in that direction. Reply messages from the CC will include that same
sequence number. This will allow both sides to detect message replay attacks,
in which messages are captured and then replayed at a later time in order to
disrupt the protocols.
The packet formats shown below do not include encryption headers or the
account and sequence numbers, which are included as described above except
where indicated. Each packet begins with an unique identifier value describing
the kind of packet it is, and is followed by data as described below.
For the low-bandwidth case, the protocols used are more modest in their
communication requirements, and no implicit sequence numbers or encryption
are used other than those explicitly called out.

5.3 Initialization of the Authenticator

For the low-bandwidth case, no special protocol is needed at initialization
time. SKA is programmed into ROM at manufacturing time like IDA and
PKCC . This protocol is only used in the case of electronic communication
between Authenticator and CC.
This is used when the Authenticator is first activated, to generate keys and
communicate them to the CC. Note that at that time the Authenticator has
access to PKCC , the Central Computer’s public key, and IDA, its own unique
ID. We assume that the Authenticator has access to a good source of random
numbers via a hardware random number generator.
Unlike other protocols, these packets are not implicitly encrypted with the
keys shared between CC and the Authenticator. Instead, the encryption used
is explicitly identified at each step of this protocol.

1. Authenticator generates SKA, the random key which will be used for
communication between itself and the CC.

2. Authenticator creates an Initialization Message block of the following

10



format:

Initialization Message

IDA

Current date and time

SKA

3. Authenticator encrypts the Initialization Message block with SKA, then
encrypts SKA using PKCC and sends both blocks to CC.

4. CC recovers first SKA, then the Initialization Message block. It verifies
that date and time are approximately current, and records the new IDA,
checking that it has not been used before. It remembers SKA and asso-
ciates that value with IDA.

5. CC creates an Initialization Message Response block of the following
form:

Initialization Message Response

6. CC encrypts the Initialization Message Response block under SKA and
sends it back to the Authenticator.

7. Authenticator decrypts and verifies the IM Response block.

5.4 Adding a New Program

This protocol is used when the user has acquired one or more new software
programs which require information from the CC in order to run. All mes-
sages in this protocol are sent protected by encryption and sequence num-
bers as described above. In the low-bandwidth case all programs are of the
immediately-runnable type and so this protocol is not used in that case.

1. Authenticator reads new programs’ Program Control Block(s) from Data
Source, and extracts IDS for (each) program.

2. Authenticator creates a New Program Message of the following format:

New Program Message

Number of programs requested

IDS

IDS

...

3. Authenticator transmits the New Program Message to the CC, encrypted
with SKA.

11



4. CC looks up the IDS’s for which keys are requested to determine the
keys needed to decrypt those programs.

5. CC creates a New Program Message Response of the following format:

New Program Message Response

Number of programs

IDS, Key

IDS, Key

IDS, Key

...

6. CC securely transmits the New Program Message Response to the Au-
thenticator.

7. Authenticator records the key information for each software program in
its Table[Software,Key] structure.

5.5 Starting Authenticated Software

This protocol describes how the Authenticator, Computer, and Data Source
interact at the time an authenticated software program is loaded and execution
begun. As described above, the software which comes from the Data Source
contains a Software Control Block and two executable components, an insecure
component which executes on the Computer and a secure component which
executes on the Authenticator. At least the secure component is encrypted,
and the insecure component may be encrypted as well. Note that in the low-
bandwidth case the software will be immediately-runnable.

1. Authenticator reads the Software Control Block from the Data Source
and extracts the IDS for the software.

2. Authenticator determines whether the required key is available to decrypt
the program. The key will be found either by looking up the IDS from
the Software Control Block in the Table[Software,Key], or else will be
SKIR for immediately-runnable programs (recognized by their IDS). If
the key is not available the Authenticator displays a message informing
the user that he needs to add the new program to the current list of
software and enable the communication with CC to acquire the needed
keys, and the protocol terminates.

3. Authenticator and Computer then read and decrypt the Insecure and
Secure Software Components from the Data Source. As noted above, the
Secure Software Component will always be encrypted, and the Insecure
Software Component may or may not be encrypted, depending on design
tradeoffs.

4. Authenticator and Computer then transfer control to the newly read soft-

12



ware components, Authenticator running the Secure Software Component
and Computer running the Insecure Software Component.

5.6 Authenticate Output

This is the principle protocol of the system, used when a program produces
some output which the user wants to have authenticated. We assume that the
division of software between the secure and insecure components is such that
the Authenticator can in fact determine that the specified output actually
occurred. For the electronic communication case it works as follows.

1. Authenticator creates an Authenticated Output message of the following
form:

Authenticated Output

IDS

Null terminated text string describing output

2. Authenticator sends the Authenticated Output message to CC, encrypted
as usual with SKA.

3. CC validates that the message correctly decrypts using SKA and accepts
output on that basis. As described above CC may then re-authenticate
the output under its own PKCC or perform whatever other actions are
appropriate.

4. CC Returns an Authentication Output Response block to confirm that
it has accepted the authenticated output. The form is:

Authenticated Output Response

IDS

Null terminated text string from CC with implementation-specific response.

5. Authenticator displays response from CC.
In the low-bandwidth case a different protocol is used, one suitable to the lim-
ited communications bandwidth available if a person is manually transferring
the data between the Authenticator and CC via a telephone connection:

1. Authenticator displays program output on the screen, along with its IDA

(possibly just some fraction of the bits of IDA is shown, enough to narrow
down the possibilities to no more than a handful of Authenticators).

2. User dials CC on the telephone and enters this information using his
touchtone keypad, as prompted by a recorded voice. (This option is
severely limited by the number of digits a user can reasonably be ex-
pected to type in.)

13



3. CC tells the user to enter a specific random challenge string into the
Authenticator using the input devices available, a keypad or a joystick
interface.

4. Authenticator calculates a cryptographic hash of the program output and
challenge string and encrypts it using SKA, displaying the result.

5. The User enters this result into the CC again using the keypad.
6. CC calculates the hash and encryption on its own and confirms the value

entered by the user.
Several variations are possible. To improve reliability, the values which the
user is asked to transfer can be padded with some redundancy to allow some
level of error correction if he gets a few digits wrong. A variation on the
above protocol uses a separate key than SKA, one which is the same for all
Authenticators and is programmed into their ROM and manufacturing time.
If this is done there is no need for the Authenticator to display IDA in step 1
or the user to enter it in step 2. Step 4 can be done by using a keyed one-way
hash function instead of an encryption function.

6 Dividing the Software

Crucial to the success of this system is the ability to divide the software
into two components: one running on the Computer and the other on the
Authenticator. Currently we have only prototyped one system in this manner
— a computer game — but our experiences have shed some light on how to
accomplish this in the general case.
It is essential that both components must be designed from the outset to
work together. We envision this as a distributed application running on two
processors; arbitrary software running on the Computer cannot be certified by
the Authenticator. It is extremely difficult to retrofit “conventional” software
to run on this type of system.
The system works best when the Authenticator runs a portion of software
that is, at the same time, essential for the successful execution of the appli-
cation and difficult to reverse-engineer from its inputs and outputs. One way
to subvert this system is to reverse-engineer the Authenticator code and then
run it as another process on the Computer. For our game software, we choose
routines related to survival — number of lives remaining, ammunition, time
left, etc. — to secure in our Authenticator.
Finally, the amount of security is necessarily tied to the value of the applica-
tion being secured. If the Authenticator is being used to secure a low-value
application, only a small portion of software is required to run on the Au-
thenticator. If it is being used to secure a high-value application, more of the
software should run on the Authenticator.

14



7 Conclusions

Real-world applications of cryptography often only require the simplest of
algorithms and protocols. We have shown how to take the simple notion of
digital signatures and, by combining it with the notion of a secure processor,
create a robust application for authenticating the outputs of software. Pro-
tocols such as these will most likely play a large role in electronic commerce
application.
Further research is required in dividing software into secure and insecure com-
ponents in such a way that if the Authenticator executes only the secure
components, then the Authenticator can determine that specified output for
the whole software has actually occurred.

8 Acknowledgments

The authors would like to thank James Jorasch, Jay Walker, and the CARDIS
program committee for their helpful comments. This work was originally done
under contract with Walker Digital, Inc. — U.S. and international patents
pending — and presented at CARDIS ’96 [5].

References

[1] D. Chaum and T. Pedersen, Wallet Databases with Observers, in
Advances in Cryptology — CRYPTO ’92 (Springer-Verlag, 1993) 89–
105.

[2] W. Diffie and M. Hellman, New Directions in Cryptography, IEEE
Transactions on Information Theory, IT-22 (1976) 644-654.

[3] T. ElGamal, A Public-Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms, IEEE Transactions on Information
Theory, IT-31 (1985) 469-472.

[4] L.C. Guillou, M. Udon, and J.-J. Quisquater, The Smart Card: A
Standardized Security Device Dedicated to Public Key Cryptography,
in G. Simmons, ed., Contempory Cryptology: The Science of
Information Integrity (IEEE Press, 1992) 561-613.

[5] J. Kelsey and B. Schneier, Authenticating Outputs of Computer
Software Using a Cryptographic Coprocessor, in Proceedings
1996 CARDIS, Smart Card Research and Advanced Applications,
(Amsterdam, 16–18 September 1996) 11–24.

[6] X. Lai, J. Massey, and S. Murphy, Markov Ciphers and Differential
Cryptanalysis, in Advances in Cryptology — CRYPTO ’91 (Springer-
Verlag, 1991) 17–38.

15



[7] National Bureau of Standards, NBS FIPS PUB 46, Data Encryption
Standard, National Bureau of Standards, U.S. Department of
Commerce, Jan 1977.

[8] National Institute of Standards and Technologies, NIST FIPS PUB
186, Digital Signature Standard, U.S. Department of Commerce, May
1994.

[9] R. Rivest, A. Shamir, and L. Adleman, A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems, Communications
of the ACM, 21 (1978) 120-126.

[10] B. Schneier, Description of a New Variable-Length Key, 64-Bit Block
Cipher (Blowfish), in R. Anderson, ed., Fast Software Encryption,
Cambridge Security Workshop Proceedings (Springer-Verlag, 1994)
191–204.

[11] B. Schneier, Applied Cryptography, 2nd Edition (John Wiley & Sons,
1996).

[12] B. Schneier and J. Kelsey, A Peer-to-Peer Software Metering System,
in The Second USENIX Workshop on Electronic Commerce (USENIX
Association, 1996), pp. 279–286.

[13] B. Yee and J.D. Tygar, Secure Coprocessors in Electronic Commerce
Applications, in The First USENIX Workshop on Electronic
Commerce (USENIX Association, 1995) 155-170.

16


